Implemented fc layer and changed docker image to use pytorch

This commit is contained in:
Chintan Shah 2019-09-08 18:47:19 -04:00
parent 7ba7fa320d
commit 00c70b3a27
3 changed files with 138 additions and 2 deletions

View File

@ -1 +1,136 @@
from typing import Optional
import torch
from torch import Tensor
from lib import utils
class FCLayerParams:
def __init__(self, rnn_network: torch.nn.RNN):
self._rnn_network = rnn_network
self._params_dict = {}
self._biases_dict = {}
def get_weights(self, shape):
if shape not in self._params_dict:
nn_param = torch.nn.init.xavier_normal(torch.empty(*shape))
self._params_dict[shape] = nn_param
self._rnn_network.register_parameter('fc_weight_{}'.format(str(shape)), nn_param)
return self._params_dict[shape]
def get_biases(self, length, bias_start=0.0):
if length not in self._biases_dict:
biases = torch.nn.init.constant(torch.empty(length), bias_start)
self._biases_dict[length] = biases
self._rnn_network.register_parameter('fc_biases_{}'.format(str(length)), biases)
return self._biases_dict[length]
class DCGRUCell(torch.nn.RNN):
def __init__(self, num_units, adj_mx, max_diffusion_step, num_nodes, input_size: int,
hidden_size: int,
num_layers: int = 1,
num_proj=None,
nonlinearity='tanh', filter_type="laplacian", use_gc_for_ru=True):
"""
:param num_units:
:param adj_mx:
:param max_diffusion_step:
:param num_nodes:
:param input_size:
:param num_proj:
:param nonlinearity:
:param filter_type: "laplacian", "random_walk", "dual_random_walk".
:param use_gc_for_ru: whether to use Graph convolution to calculate the reset and update gates.
"""
super(DCGRUCell, self).__init__(input_size, hidden_size, bias=True,
# bias param does not exist in tf code?
num_layers=num_layers,
nonlinearity=nonlinearity)
self._activation = torch.tanh if nonlinearity == 'tanh' else torch.relu
# support other nonlinearities up here?
self._num_nodes = num_nodes
self._num_proj = num_proj
self._num_units = num_units
self._max_diffusion_step = max_diffusion_step
self._supports = []
self._use_gc_for_ru = use_gc_for_ru
supports = []
if filter_type == "laplacian":
supports.append(utils.calculate_scaled_laplacian(adj_mx, lambda_max=None))
elif filter_type == "random_walk":
supports.append(utils.calculate_random_walk_matrix(adj_mx).T)
elif filter_type == "dual_random_walk":
supports.append(utils.calculate_random_walk_matrix(adj_mx).T)
supports.append(utils.calculate_random_walk_matrix(adj_mx.T).T)
else:
supports.append(utils.calculate_scaled_laplacian(adj_mx))
for support in supports:
self._supports.append(self._build_sparse_matrix(support))
self._proj_weights = torch.nn.Parameter(torch.randn(self._num_units, self._num_proj))
self._fc_params = FCLayerParams(self)
@property
def state_size(self):
return self._num_nodes * self._num_units
@property
def output_size(self):
output_size = self._num_nodes * self._num_units
if self._num_proj is not None:
output_size = self._num_nodes * self._num_proj
return output_size
def forward(self, input: Tensor, hx: Optional[Tensor] = ...):
"""Gated recurrent unit (GRU) with Graph Convolution.
:param input: (B, num_nodes * input_dim)
:return
- Output: A `2-D` tensor with shape `[batch_size x self.output_size]`.
- New state: Either a single `2-D` tensor, or a tuple of tensors matching
the arity and shapes of `state`
"""
output_size = 2 * self._num_units
# We start with bias of 1.0 to not reset and not update.
if self._use_gc_for_ru:
fn = self._gconv
else:
fn = self._fc
value = torch.sigmoid(fn(input, hx, output_size, bias_start=1.0))
value = torch.reshape(value, (-1, self._num_nodes, output_size))
r, u = torch.split(tensor=value, split_size_or_sections=2, dim=-1)
r = torch.reshape(r, (-1, self._num_nodes * self._num_units))
u = torch.reshape(u, (-1, self._num_nodes * self._num_units))
c = self._gconv(input, r * hx, self._num_units)
if self._activation is not None:
c = self._activation(c)
output = new_state = u * hx + (1 - u) * c
if self._num_proj is not None:
batch_size = input.shape[0]
output = torch.reshape(new_state, shape=(-1, self._num_units))
output = torch.reshape(torch.matmul(output, self._proj_weights),
shape=(batch_size, self.output_size))
return output, new_state
@staticmethod
def _concat(x, x_):
x_ = x_.unsqueeze(0)
return torch.cat([x, x_], dim=0)
def _fc(self, inputs, state, output_size, bias_start=0.0):
batch_size = inputs.shape[0]
inputs = torch.reshape(inputs, (batch_size * self._num_nodes, -1))
state = torch.reshape(state, (batch_size * self._num_nodes, -1))
inputs_and_state = torch.cat([inputs, state], dim=-1)
input_size = inputs_and_state.shape[-1]
weights = self._fc_params.get_weights((input_size, output_size))
value = torch.sigmoid(torch.matmul(inputs_and_state, weights))
biases = self._fc_params.get_biases(output_size, bias_start)
value += biases
return value

View File

@ -4,7 +4,6 @@ from __future__ import print_function
import numpy as np
import tensorflow as tf
from tensorflow.contrib.rnn import RNNCell
from lib import utils
@ -85,6 +84,7 @@ class DCGRUCell(RNNCell):
"""
with tf.variable_scope(scope or "dcgru_cell"):
with tf.variable_scope("gates"): # Reset gate and update gate.
print(inputs.get_shape(), self.output_size)
output_size = 2 * self._num_units
# We start with bias of 1.0 to not reset and not update.
if self._use_gc_for_ru:

View File

@ -5,3 +5,4 @@ pyyaml
statsmodels
tensorflow>=1.3.0
torch
tables