diff --git a/model/pytorch/dcrnn_supervisor.py b/model/pytorch/dcrnn_supervisor.py index 2355990..481c5da 100644 --- a/model/pytorch/dcrnn_supervisor.py +++ b/model/pytorch/dcrnn_supervisor.py @@ -109,20 +109,10 @@ class DCRNNSupervisor: val_iterator = self._data['{}_loader'.format(dataset)].get_iterator() losses = [] - per_timestep_loss = torch.zeros(12) # hardcoded batch size, horizon - num_batches = 0 - - for batch_i, (x, y) in enumerate(val_iterator): + for _, (x, y) in enumerate(val_iterator): x, y = self._prepare_data(x, y) output = self.dcrnn_model(x) - - # (horizon, batch_size, num_sensor * output_dim) - for t in range(y.size(0)): - per_timestep_loss[t] += self._compute_loss(y[t], output[t]) - - num_batches += 1 - loss = self._compute_loss(y, output) losses.append(loss.item()) @@ -130,11 +120,6 @@ class DCRNNSupervisor: self._writer.add_scalar('{} loss'.format(dataset), mean_loss, batches_seen) - per_timestep_loss /= num_batches - - for i, val in enumerate(per_timestep_loss): - self._logger.info("Dataset:{}, Timestep: {}, MAE:{:.4f}".format(dataset, i, val.item())) - return mean_loss def _train(self, base_lr, @@ -148,8 +133,6 @@ class DCRNNSupervisor: lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=steps, gamma=lr_decay_ratio) - self.dcrnn_model = self.dcrnn_model.train() - self._logger.info('Start training ...') # this will fail if model is loaded with a changed batch_size