Implemented seq2seq without DCGRU and curriculum learning
This commit is contained in:
parent
7349f2ed67
commit
0769a3b2e2
|
|
@ -1,10 +1,11 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
|
||||
class DCRNNModel(nn.Module):
|
||||
class DCRNNModel(metaclass=ABC):
|
||||
def __init__(self, is_training, scale_factor, adj_mx, **model_kwargs):
|
||||
super().__init__()
|
||||
self.adj_mx = adj_mx
|
||||
|
|
@ -20,25 +21,23 @@ class DCRNNModel(nn.Module):
|
|||
self.input_dim = int(model_kwargs.get('input_dim', 1))
|
||||
self.hidden_state_size = self.num_nodes * self.rnn_units
|
||||
|
||||
@abstractmethod
|
||||
def dcgru_layers(self):
|
||||
pass
|
||||
|
||||
class EncoderModel(DCRNNModel):
|
||||
def __init__(self, is_training, scaler, adj_mx, **model_kwargs):
|
||||
super().__init__(is_training, scaler, adj_mx, **model_kwargs)
|
||||
self.seq_len = int(model_kwargs.get('seq_len')) # for the encoder
|
||||
# https://pytorch.org/docs/stable/nn.html#gru
|
||||
@staticmethod
|
||||
def _forward_layer(inputs, dcgru_layer, hidden_state):
|
||||
# inputs shape = (timesteps, batch_size, input_size)
|
||||
outputs = []
|
||||
for cell_input in inputs[:, ]:
|
||||
hidden_state = dcgru_layer(cell_input, hidden_state)
|
||||
outputs.append(hidden_state)
|
||||
|
||||
# input shape is supposed to be Input (batch_size, timesteps, num_sensor*input_dim)
|
||||
# first layer takes input shape and subsequent layer take input from the first layer
|
||||
self.dcgru_layers = [nn.GRUCell(input_size=self.num_nodes * self.input_dim,
|
||||
hidden_size=self.hidden_state_size,
|
||||
bias=True)] + [nn.GRUCell(input_size=self.hidden_state_size,
|
||||
hidden_size=self.hidden_state_size,
|
||||
bias=True) for _ in
|
||||
range(self.num_rnn_layers - 1)]
|
||||
return torch.cat(outputs, dim=1) # runs in O(timesteps) not too slow
|
||||
|
||||
def forward(self, inputs, hidden_state=None):
|
||||
def _forward_impl(self, inputs, hidden_state):
|
||||
"""
|
||||
Encoder forward pass.
|
||||
forward pass.
|
||||
|
||||
:param inputs: shape (batch_size, timesteps, num_nodes * input_dim)
|
||||
:param hidden_state: (num_layers, batch_size, self.hidden_state_size) -> optional, zeros if not provided
|
||||
|
|
@ -51,6 +50,7 @@ class EncoderModel(DCRNNModel):
|
|||
hidden_state = torch.zeros((self.num_rnn_layers, batch_size, self.hidden_state_size),
|
||||
device=device)
|
||||
hidden = torch.empty_like(hidden_state)
|
||||
# noinspection PyTypeChecker
|
||||
for layer_num, dcgru_layer in enumerate(self.dcgru_layers):
|
||||
layer_states = self._forward_layer(layer_input, dcgru_layer, hidden_state[layer_num])
|
||||
# append last time step's hidden state
|
||||
|
|
@ -60,31 +60,59 @@ class EncoderModel(DCRNNModel):
|
|||
output = layer_input # last layer's output
|
||||
return output, hidden
|
||||
|
||||
@staticmethod
|
||||
def _forward_layer(inputs, dcgru_layer, hidden_state):
|
||||
# inputs shape = (timesteps, batch_size, input_size)
|
||||
outputs = []
|
||||
for cell_input in inputs[:, ]:
|
||||
hidden_state = dcgru_layer(cell_input, hidden_state)
|
||||
outputs.append(hidden_state)
|
||||
|
||||
return torch.cat(outputs, dim=1) # runs in O(timesteps) not too slow
|
||||
class EncoderModel(nn.Module, DCRNNModel):
|
||||
def __init__(self, is_training, scaler, adj_mx, **model_kwargs):
|
||||
super().__init__(is_training, scaler, adj_mx, **model_kwargs)
|
||||
# https://pytorch.org/docs/stable/nn.html#gru
|
||||
self.seq_len = int(model_kwargs.get('seq_len')) # for the encoder
|
||||
|
||||
def dcgru_layers(self):
|
||||
# input shape is supposed to be Input (batch_size, timesteps, num_sensor*input_dim)
|
||||
# first layer takes input shape and subsequent layer take input from the first layer
|
||||
return [nn.GRUCell(input_size=self.num_nodes * self.input_dim,
|
||||
hidden_size=self.hidden_state_size,
|
||||
bias=True)] + [nn.GRUCell(input_size=self.hidden_state_size,
|
||||
hidden_size=self.hidden_state_size,
|
||||
bias=True) for _ in
|
||||
range(self.num_rnn_layers - 1)]
|
||||
|
||||
def forward(self, inputs, hidden_state=None):
|
||||
"""
|
||||
Encoder forward pass.
|
||||
|
||||
:param inputs: shape (batch_size, timesteps, num_nodes * input_dim)
|
||||
:param hidden_state: (num_layers, batch_size, self.hidden_state_size) -> optional, zeros if not provided
|
||||
:return: output: # shape (timesteps, batch_size, self.hidden_state_size)
|
||||
hidden_state # shape (num_layers, batch_size, self.hidden_state_size) (lower indices mean lower layers)
|
||||
"""
|
||||
return self._forward_impl(inputs, hidden_state)
|
||||
|
||||
|
||||
class DecoderModel(DCRNNModel):
|
||||
class DecoderModel(nn.Module, DCRNNModel):
|
||||
def __init__(self, is_training, scale_factor, adj_mx, **model_kwargs):
|
||||
super().__init__(is_training, scale_factor, adj_mx, **model_kwargs)
|
||||
self.output_dim = int(model_kwargs.get('output_dim', 1))
|
||||
self.use_curriculum_learning = bool(model_kwargs.get('use_curriculum_learning', False))
|
||||
self.horizon = int(model_kwargs.get('horizon', 1)) # for the decoder
|
||||
self.projection_layer = nn.Linear(self.hidden_state_size, self.num_nodes * self.output_dim)
|
||||
|
||||
self.dcgru_layers = [nn.GRUCell(input_size=self.num_nodes * self.output_dim,
|
||||
hidden_size=self.rnn_units,
|
||||
bias=True)] + [nn.GRUCell(input_size=self.hidden_state_size,
|
||||
hidden_size=self.hidden_state_size,
|
||||
bias=True) for _ in
|
||||
range(self.num_rnn_layers - 1)]
|
||||
self.projection_layer = nn.Linear(self.hidden_state_size, self.rnn_units * self.output_dim)
|
||||
def dcgru_layers(self):
|
||||
return [nn.GRUCell(input_size=self.num_nodes * self.output_dim,
|
||||
hidden_size=self.hidden_state_size,
|
||||
bias=True)] + [nn.GRUCell(input_size=self.hidden_state_size,
|
||||
hidden_size=self.hidden_state_size,
|
||||
bias=True) for _ in
|
||||
range(self.num_rnn_layers - 1)]
|
||||
|
||||
def forward(self):
|
||||
pass # repeat encoder and apply a linear layer to every timestep's output
|
||||
def forward(self, inputs, hidden_state=None):
|
||||
"""
|
||||
Decoder forward pass.
|
||||
|
||||
:param inputs: shape (batch_size, timesteps, num_nodes * input_dim)
|
||||
:param hidden_state: (num_layers, batch_size, self.hidden_state_size) -> optional, zeros if not provided
|
||||
:return: output: # shape (timesteps, batch_size, self.num_nodes * self.output_dim)
|
||||
hidden_state # shape (num_layers, batch_size, self.hidden_state_size) (lower indices mean lower layers)
|
||||
"""
|
||||
output, hidden = self._forward_impl(inputs, hidden_state)
|
||||
return self.projection_layer(output), hidden_state
|
||||
|
|
|
|||
Loading…
Reference in New Issue