Implemented seq2seq without DCGRU and curriculum learning
This commit is contained in:
parent
7349f2ed67
commit
0769a3b2e2
|
|
@ -1,10 +1,11 @@
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
from abc import ABC, abstractmethod
|
||||||
|
|
||||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
|
|
||||||
|
|
||||||
class DCRNNModel(nn.Module):
|
class DCRNNModel(metaclass=ABC):
|
||||||
def __init__(self, is_training, scale_factor, adj_mx, **model_kwargs):
|
def __init__(self, is_training, scale_factor, adj_mx, **model_kwargs):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.adj_mx = adj_mx
|
self.adj_mx = adj_mx
|
||||||
|
|
@ -20,25 +21,23 @@ class DCRNNModel(nn.Module):
|
||||||
self.input_dim = int(model_kwargs.get('input_dim', 1))
|
self.input_dim = int(model_kwargs.get('input_dim', 1))
|
||||||
self.hidden_state_size = self.num_nodes * self.rnn_units
|
self.hidden_state_size = self.num_nodes * self.rnn_units
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def dcgru_layers(self):
|
||||||
|
pass
|
||||||
|
|
||||||
class EncoderModel(DCRNNModel):
|
@staticmethod
|
||||||
def __init__(self, is_training, scaler, adj_mx, **model_kwargs):
|
def _forward_layer(inputs, dcgru_layer, hidden_state):
|
||||||
super().__init__(is_training, scaler, adj_mx, **model_kwargs)
|
# inputs shape = (timesteps, batch_size, input_size)
|
||||||
self.seq_len = int(model_kwargs.get('seq_len')) # for the encoder
|
outputs = []
|
||||||
# https://pytorch.org/docs/stable/nn.html#gru
|
for cell_input in inputs[:, ]:
|
||||||
|
hidden_state = dcgru_layer(cell_input, hidden_state)
|
||||||
|
outputs.append(hidden_state)
|
||||||
|
|
||||||
# input shape is supposed to be Input (batch_size, timesteps, num_sensor*input_dim)
|
return torch.cat(outputs, dim=1) # runs in O(timesteps) not too slow
|
||||||
# first layer takes input shape and subsequent layer take input from the first layer
|
|
||||||
self.dcgru_layers = [nn.GRUCell(input_size=self.num_nodes * self.input_dim,
|
|
||||||
hidden_size=self.hidden_state_size,
|
|
||||||
bias=True)] + [nn.GRUCell(input_size=self.hidden_state_size,
|
|
||||||
hidden_size=self.hidden_state_size,
|
|
||||||
bias=True) for _ in
|
|
||||||
range(self.num_rnn_layers - 1)]
|
|
||||||
|
|
||||||
def forward(self, inputs, hidden_state=None):
|
def _forward_impl(self, inputs, hidden_state):
|
||||||
"""
|
"""
|
||||||
Encoder forward pass.
|
forward pass.
|
||||||
|
|
||||||
:param inputs: shape (batch_size, timesteps, num_nodes * input_dim)
|
:param inputs: shape (batch_size, timesteps, num_nodes * input_dim)
|
||||||
:param hidden_state: (num_layers, batch_size, self.hidden_state_size) -> optional, zeros if not provided
|
:param hidden_state: (num_layers, batch_size, self.hidden_state_size) -> optional, zeros if not provided
|
||||||
|
|
@ -51,6 +50,7 @@ class EncoderModel(DCRNNModel):
|
||||||
hidden_state = torch.zeros((self.num_rnn_layers, batch_size, self.hidden_state_size),
|
hidden_state = torch.zeros((self.num_rnn_layers, batch_size, self.hidden_state_size),
|
||||||
device=device)
|
device=device)
|
||||||
hidden = torch.empty_like(hidden_state)
|
hidden = torch.empty_like(hidden_state)
|
||||||
|
# noinspection PyTypeChecker
|
||||||
for layer_num, dcgru_layer in enumerate(self.dcgru_layers):
|
for layer_num, dcgru_layer in enumerate(self.dcgru_layers):
|
||||||
layer_states = self._forward_layer(layer_input, dcgru_layer, hidden_state[layer_num])
|
layer_states = self._forward_layer(layer_input, dcgru_layer, hidden_state[layer_num])
|
||||||
# append last time step's hidden state
|
# append last time step's hidden state
|
||||||
|
|
@ -60,31 +60,59 @@ class EncoderModel(DCRNNModel):
|
||||||
output = layer_input # last layer's output
|
output = layer_input # last layer's output
|
||||||
return output, hidden
|
return output, hidden
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _forward_layer(inputs, dcgru_layer, hidden_state):
|
|
||||||
# inputs shape = (timesteps, batch_size, input_size)
|
|
||||||
outputs = []
|
|
||||||
for cell_input in inputs[:, ]:
|
|
||||||
hidden_state = dcgru_layer(cell_input, hidden_state)
|
|
||||||
outputs.append(hidden_state)
|
|
||||||
|
|
||||||
return torch.cat(outputs, dim=1) # runs in O(timesteps) not too slow
|
class EncoderModel(nn.Module, DCRNNModel):
|
||||||
|
def __init__(self, is_training, scaler, adj_mx, **model_kwargs):
|
||||||
|
super().__init__(is_training, scaler, adj_mx, **model_kwargs)
|
||||||
|
# https://pytorch.org/docs/stable/nn.html#gru
|
||||||
|
self.seq_len = int(model_kwargs.get('seq_len')) # for the encoder
|
||||||
|
|
||||||
|
def dcgru_layers(self):
|
||||||
|
# input shape is supposed to be Input (batch_size, timesteps, num_sensor*input_dim)
|
||||||
|
# first layer takes input shape and subsequent layer take input from the first layer
|
||||||
|
return [nn.GRUCell(input_size=self.num_nodes * self.input_dim,
|
||||||
|
hidden_size=self.hidden_state_size,
|
||||||
|
bias=True)] + [nn.GRUCell(input_size=self.hidden_state_size,
|
||||||
|
hidden_size=self.hidden_state_size,
|
||||||
|
bias=True) for _ in
|
||||||
|
range(self.num_rnn_layers - 1)]
|
||||||
|
|
||||||
|
def forward(self, inputs, hidden_state=None):
|
||||||
|
"""
|
||||||
|
Encoder forward pass.
|
||||||
|
|
||||||
|
:param inputs: shape (batch_size, timesteps, num_nodes * input_dim)
|
||||||
|
:param hidden_state: (num_layers, batch_size, self.hidden_state_size) -> optional, zeros if not provided
|
||||||
|
:return: output: # shape (timesteps, batch_size, self.hidden_state_size)
|
||||||
|
hidden_state # shape (num_layers, batch_size, self.hidden_state_size) (lower indices mean lower layers)
|
||||||
|
"""
|
||||||
|
return self._forward_impl(inputs, hidden_state)
|
||||||
|
|
||||||
|
|
||||||
class DecoderModel(DCRNNModel):
|
class DecoderModel(nn.Module, DCRNNModel):
|
||||||
def __init__(self, is_training, scale_factor, adj_mx, **model_kwargs):
|
def __init__(self, is_training, scale_factor, adj_mx, **model_kwargs):
|
||||||
super().__init__(is_training, scale_factor, adj_mx, **model_kwargs)
|
super().__init__(is_training, scale_factor, adj_mx, **model_kwargs)
|
||||||
self.output_dim = int(model_kwargs.get('output_dim', 1))
|
self.output_dim = int(model_kwargs.get('output_dim', 1))
|
||||||
self.use_curriculum_learning = bool(model_kwargs.get('use_curriculum_learning', False))
|
self.use_curriculum_learning = bool(model_kwargs.get('use_curriculum_learning', False))
|
||||||
self.horizon = int(model_kwargs.get('horizon', 1)) # for the decoder
|
self.horizon = int(model_kwargs.get('horizon', 1)) # for the decoder
|
||||||
|
self.projection_layer = nn.Linear(self.hidden_state_size, self.num_nodes * self.output_dim)
|
||||||
|
|
||||||
self.dcgru_layers = [nn.GRUCell(input_size=self.num_nodes * self.output_dim,
|
def dcgru_layers(self):
|
||||||
hidden_size=self.rnn_units,
|
return [nn.GRUCell(input_size=self.num_nodes * self.output_dim,
|
||||||
bias=True)] + [nn.GRUCell(input_size=self.hidden_state_size,
|
hidden_size=self.hidden_state_size,
|
||||||
hidden_size=self.hidden_state_size,
|
bias=True)] + [nn.GRUCell(input_size=self.hidden_state_size,
|
||||||
bias=True) for _ in
|
hidden_size=self.hidden_state_size,
|
||||||
range(self.num_rnn_layers - 1)]
|
bias=True) for _ in
|
||||||
self.projection_layer = nn.Linear(self.hidden_state_size, self.rnn_units * self.output_dim)
|
range(self.num_rnn_layers - 1)]
|
||||||
|
|
||||||
def forward(self):
|
def forward(self, inputs, hidden_state=None):
|
||||||
pass # repeat encoder and apply a linear layer to every timestep's output
|
"""
|
||||||
|
Decoder forward pass.
|
||||||
|
|
||||||
|
:param inputs: shape (batch_size, timesteps, num_nodes * input_dim)
|
||||||
|
:param hidden_state: (num_layers, batch_size, self.hidden_state_size) -> optional, zeros if not provided
|
||||||
|
:return: output: # shape (timesteps, batch_size, self.num_nodes * self.output_dim)
|
||||||
|
hidden_state # shape (num_layers, batch_size, self.hidden_state_size) (lower indices mean lower layers)
|
||||||
|
"""
|
||||||
|
output, hidden = self._forward_impl(inputs, hidden_state)
|
||||||
|
return self.projection_layer(output), hidden_state
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue