Refactored code and moved everything into a DCRNN forward pass

This commit is contained in:
Chintan Shah 2019-10-04 13:02:50 -04:00
parent f41dc442b0
commit 2b8d5e6b31
2 changed files with 127 additions and 96 deletions

View File

@ -1,13 +1,15 @@
from typing import Any
import numpy as np
import torch
import torch.nn as nn
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class DCRNNModel:
def __init__(self, is_training, adj_mx, **model_kwargs):
class Seq2SeqAttrs:
def __init__(self, adj_mx, **model_kwargs):
self.adj_mx = adj_mx
self.is_training = is_training
self.max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2))
self.cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000))
self.filter_type = model_kwargs.get('filter_type', 'laplacian')
@ -18,12 +20,12 @@ class DCRNNModel:
self.hidden_state_size = self.num_nodes * self.rnn_units
class EncoderModel(nn.Module, DCRNNModel):
def __init__(self, is_training, adj_mx, **model_kwargs):
class EncoderModel(nn.Module, Seq2SeqAttrs):
def __init__(self, adj_mx, **model_kwargs):
# super().__init__(is_training, adj_mx, **model_kwargs)
# https://pytorch.org/docs/stable/nn.html#gru
nn.Module.__init__(self)
DCRNNModel.__init__(self, is_training, adj_mx, **model_kwargs)
Seq2SeqAttrs.__init__(self, adj_mx, **model_kwargs)
self.input_dim = int(model_kwargs.get('input_dim', 1))
self.seq_len = int(model_kwargs.get('seq_len')) # for the encoder
self.dcgru_layers = nn.ModuleList([nn.GRUCell(input_size=self.num_nodes * self.input_dim,
@ -59,21 +61,11 @@ class EncoderModel(nn.Module, DCRNNModel):
return output, torch.stack(hidden_states) # runs in O(num_layers) so not too slow
class DecoderModel(nn.Module, DCRNNModel):
def __init__(self, is_training, adj_mx, **model_kwargs):
class DecoderModel(nn.Module, Seq2SeqAttrs):
def __init__(self, adj_mx, **model_kwargs):
# super().__init__(is_training, adj_mx, **model_kwargs)
nn.Module.__init__(self)
DCRNNModel.__init__(self, is_training, adj_mx, **model_kwargs)
self.adj_mx = adj_mx
self.is_training = is_training
self.max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2))
self.cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000))
self.filter_type = model_kwargs.get('filter_type', 'laplacian')
# self.max_grad_norm = float(model_kwargs.get('max_grad_norm', 5.0))
self.num_nodes = int(model_kwargs.get('num_nodes', 1))
self.num_rnn_layers = int(model_kwargs.get('num_rnn_layers', 1))
self.rnn_units = int(model_kwargs.get('rnn_units'))
self.hidden_state_size = self.num_nodes * self.rnn_units
Seq2SeqAttrs.__init__(self, adj_mx, **model_kwargs)
self.output_dim = int(model_kwargs.get('output_dim', 1))
self.use_curriculum_learning = bool(model_kwargs.get('use_curriculum_learning', False))
self.horizon = int(model_kwargs.get('horizon', 1)) # for the decoder
@ -105,3 +97,65 @@ class DecoderModel(nn.Module, DCRNNModel):
output = next_hidden_state
return self.projection_layer(output), torch.stack(hidden_states)
class DCRNNModel(nn.Module, Seq2SeqAttrs):
def __init__(self, adj_mx, logger, **model_kwargs):
super().__init__()
Seq2SeqAttrs.__init__(self, adj_mx, **model_kwargs)
self.encoder_model = EncoderModel(adj_mx, **model_kwargs)
self.decoder_model = DecoderModel(adj_mx, **model_kwargs)
self._logger = logger
def encoder(self, inputs):
"""
encoder forward pass on t time steps
:param inputs: shape (seq_len, batch_size, num_sensor * input_dim)
:return: encoder_hidden_state: (num_layers, batch_size, self.hidden_state_size)
"""
encoder_hidden_state = None
for t in range(self.encoder_model.seq_len):
_, encoder_hidden_state = self.encoder_model(inputs[t], encoder_hidden_state)
return encoder_hidden_state
def decoder(self, encoder_hidden_state, labels=None, batches_seen=None):
"""
Decoder forward pass
:param encoder_hidden_state: (num_layers, batch_size, self.hidden_state_size)
:param labels: (self.horizon, batch_size, self.num_nodes * self.output_dim) [optional, not exist for inference]
:param batches_seen: global step [optional, not exist for inference]
:return: output: (self.horizon, batch_size, self.num_nodes * self.output_dim)
"""
batch_size = encoder_hidden_state.size(1)
go_symbol = torch.zeros((batch_size, self.num_nodes * self.output_dim))
decoder_hidden_state = encoder_hidden_state
decoder_input = go_symbol
outputs = []
for t in range(self.decoder_model.horizon):
decoder_output, decoder_hidden_state = self.decoder_model(decoder_input,
decoder_hidden_state)
decoder_input = decoder_output
outputs.append(decoder_output)
if self.training and self.use_curriculum_learning:
c = np.random.uniform(0, 1)
if c < self._compute_sampling_threshold(batches_seen):
decoder_input = labels[t]
outputs = torch.stack(outputs)
return outputs
def forward(self, inputs, labels=None, batches_seen=None):
"""
seq2seq forward pass
:param inputs: shape (seq_len, batch_size, num_sensor * input_dim)
:param labels: shape (horizon, batch_size, num_sensor * output)
:param batches_seen: batches seen till date
:return: output: (self.horizon, batch_size, self.num_nodes * self.output_dim)
"""
encoder_hidden_state = self.encoder(inputs)
self._logger.info("Encoder complete, starting decoder")
outputs = self.decoder(encoder_hidden_state, labels, batches_seen=batches_seen)
self._logger.info("Decoder complete")
return outputs

View File

@ -5,7 +5,7 @@ import numpy as np
import torch
from lib import utils
from model.pytorch.dcrnn_model import EncoderModel, DecoderModel
from model.pytorch.dcrnn_model import DCRNNModel
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@ -38,8 +38,7 @@ class DCRNNSupervisor:
self.horizon = int(self._model_kwargs.get('horizon', 1)) # for the decoder
# setup model
self.encoder_model = EncoderModel(True, adj_mx, **self._model_kwargs)
self.decoder_model = DecoderModel(True, adj_mx, **self._model_kwargs)
self.dcrnn_model = DCRNNModel(adj_mx, self._logger, **self._model_kwargs)
@staticmethod
def _get_log_dir(kwargs):
@ -73,76 +72,12 @@ class DCRNNSupervisor:
kwargs.update(self._train_kwargs)
return self._train(**kwargs)
def _train_one_batch(self, inputs, labels, batches_seen, encoder_optimizer,
decoder_optimizer, criterion):
"""
:param inputs: shape (seq_len, batch_size, num_sensor, input_dim)
:param labels: shape (horizon, batch_size, num_sensor, input_dim)
:param encoder_optimizer:
:param decoder_optimizer:
:param criterion: minimize this criterion
:return: loss?
"""
encoder_optimizer.zero_grad()
decoder_optimizer.zero_grad()
batch_size = inputs.size(1)
inputs = inputs.view(self.seq_len, batch_size, self.num_nodes * self.input_dim)
labels = labels[..., :self.output_dim].view(self.horizon, batch_size,
self.num_nodes * self.output_dim)
loss = 0
encoder_hidden_state = None
for t in range(self.seq_len):
_, encoder_hidden_state = self.encoder_model.forward(inputs[t], encoder_hidden_state)
self._logger.info("Encoder complete, starting decoder")
go_symbol = torch.zeros((batch_size, self.num_nodes * self.output_dim))
decoder_hidden_state = encoder_hidden_state
decoder_input = go_symbol
outputs = []
for t in range(self.horizon):
decoder_output, decoder_hidden_state = self.decoder_model.forward(decoder_input,
decoder_hidden_state)
decoder_input = decoder_output
outputs.append(decoder_output)
if self.use_curriculum_learning: # todo check for is_training (pytorch way?)
c = np.random.uniform(0, 1)
if c < self._compute_sampling_threshold(batches_seen):
decoder_input = labels[t]
loss += criterion(self.standard_scaler.inverse_transform(decoder_output),
self.standard_scaler.inverse_transform(labels[t]))
self._logger.info("Decoder complete, starting backprop")
loss.backward()
# gradient clipping - this does it in place
torch.nn.utils.clip_grad_norm_(self.encoder_model.parameters(), self.max_grad_norm)
torch.nn.utils.clip_grad_norm_(self.decoder_model.parameters(), self.max_grad_norm)
encoder_optimizer.step()
decoder_optimizer.step()
outputs = torch.stack(outputs)
return outputs.view(self.horizon, batch_size, self.num_nodes, self.output_dim), loss.item()
def _train(self, base_lr,
steps, patience=50, epochs=100,
min_learning_rate=2e-6, lr_decay_ratio=0.1, log_every=10, save_model=1,
test_every_n_epochs=10, **kwargs):
# steps is used in learning rate - will see if need to use it?
encoder_optimizer = torch.optim.Adam(self.encoder_model.parameters(), lr=base_lr)
decoder_optimizer = torch.optim.Adam(self.encoder_model.parameters(), lr=base_lr)
optimizer = torch.optim.Adam(self.dcrnn_model.parameters(), lr=base_lr)
criterion = torch.nn.L1Loss() # mae loss
batches_seen = 0
@ -154,16 +89,23 @@ class DCRNNSupervisor:
start_time = time.time()
for _, (x, y) in enumerate(train_iterator):
x = torch.from_numpy(x).float()
y = torch.from_numpy(y).float()
self._logger.debug("X: {}".format(x.size()))
self._logger.debug("y: {}".format(y.size()))
x = x.permute(1, 0, 2, 3)
y = y.permute(1, 0, 2, 3)
output, loss = self._train_one_batch(x, y, batches_seen, encoder_optimizer,
decoder_optimizer, criterion)
losses.append(loss)
optimizer.zero_grad()
x, y = self._get_x_y(x, y)
x, y = self._get_x_y_in_correct_dims(x, y)
output = self.dcrnn_model(x, y)
loss = self._compute_loss(y, output, criterion)
self._logger.info(loss.item())
losses.append(loss.item())
batches_seen += 1
loss.backward()
# gradient clipping - this does it in place
torch.nn.utils.clip_grad_norm_(self.dcrnn_model.parameters(), self.max_grad_norm)
optimizer.step()
end_time = time.time()
if epoch_num % log_every == 0:
@ -173,6 +115,41 @@ class DCRNNSupervisor:
0.0, (end_time - start_time))
self._logger.info(message)
def _get_x_y(self, x, y):
"""
:param x: shape (batch_size, seq_len, num_sensor, input_dim)
:param y: shape (batch_size, horizon, num_sensor, input_dim)
:returns x shape (seq_len, batch_size, num_sensor, input_dim)
y shape (horizon, batch_size, num_sensor, input_dim)
"""
x = torch.from_numpy(x).float()
y = torch.from_numpy(y).float()
self._logger.debug("X: {}".format(x.size()))
self._logger.debug("y: {}".format(y.size()))
x = x.permute(1, 0, 2, 3)
y = y.permute(1, 0, 2, 3)
return x, y
def _get_x_y_in_correct_dims(self, x, y):
"""
:param x: shape (seq_len, batch_size, num_sensor, input_dim)
:param y: shape (horizon, batch_size, num_sensor, input_dim)
:return: x: shape (seq_len, batch_size, num_sensor * input_dim)
y: shape (horizon, batch_size, num_sensor * output_dim)
"""
batch_size = x.size(1)
x = x.view(self.seq_len, batch_size, self.num_nodes * self.input_dim)
y = y[..., :self.output_dim].view(self.horizon, batch_size,
self.num_nodes * self.output_dim)
return x, y
def _compute_sampling_threshold(self, batches_seen):
return self.cl_decay_steps / (
self.cl_decay_steps + np.exp(batches_seen / self.cl_decay_steps))
def _compute_loss(self, y_true, y_predicted, criterion):
loss = 0
for t in range(self.horizon):
loss += criterion(self.standard_scaler.inverse_transform(y_predicted[t]),
self.standard_scaler.inverse_transform(y_true[t]))
return loss