Add instructions on using HDF5 with python.
This commit is contained in:
parent
81b4626193
commit
4344dddc6d
|
|
@ -22,7 +22,8 @@ pip install -r requirements.txt
|
|||
## Data Preparation
|
||||
The traffic data files for Los Angeles (METR-LA) and the Bay Area (PEMS-BAY), i.e., `metr-la.h5` and `pems-bay.h5`, are available at [Google Drive](https://drive.google.com/open?id=10FOTa6HXPqX8Pf5WRoRwcFnW9BrNZEIX) or [Baidu Yun](https://pan.baidu.com/s/14Yy9isAIZYdU__OYEQGa_g), and should be
|
||||
put into the `data/` folder.
|
||||
Besides, the locations of sensors Los Angeles are available at [data/sensor_graph/graph_sensor_locations.csv](https://github.com/liyaguang/DCRNN/blob/master/data/sensor_graph/graph_sensor_locations.csv).
|
||||
The `*.h5` files store the data in `panads.DataFrame` using the `HDF5` file format. Here is an article about [Using HDF5 with Python](https://medium.com/@jerilkuriakose/using-hdf5-with-python-6c5242d08773).
|
||||
|
||||
```bash
|
||||
# Create data directories
|
||||
mkdir -p data/{METR-LA,PEMS-BAY}
|
||||
|
|
@ -36,6 +37,7 @@ python -m scripts.generate_training_data --output_dir=data/PEMS-BAY --traffic_df
|
|||
The generated train/val/test dataset will be saved at `data/{METR-LA,PEMS-BAY}/{train,val,test}.npz`.
|
||||
|
||||
|
||||
The locations of sensors Los Angeles are available at [data/sensor_graph/graph_sensor_locations.csv](https://github.com/liyaguang/DCRNN/blob/master/data/sensor_graph/graph_sensor_locations.csv).
|
||||
## Run the Pre-trained Model on METR-LA
|
||||
|
||||
```bash
|
||||
|
|
|
|||
|
|
@ -116,7 +116,7 @@ if __name__ == "__main__":
|
|||
parser.add_argument(
|
||||
"--traffic_df_filename",
|
||||
type=str,
|
||||
default="data/df_highway_2012_4mon_sample.h5",
|
||||
default="data/metr-la.h5",
|
||||
help="Raw traffic readings.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
|
|
|||
Loading…
Reference in New Issue