Ensured all parameters are added to the optimizer
This commit is contained in:
parent
de42a67391
commit
5509e9aae5
|
|
@ -147,6 +147,11 @@ class DCRNNSupervisor:
|
|||
x, y = self._prepare_data(x, y)
|
||||
|
||||
output = self.dcrnn_model(x, y, batches_seen)
|
||||
|
||||
if batches_seen == 0:
|
||||
# this is a workaround to accommodate dynamically registered parameters in DCGRUCell
|
||||
optimizer = torch.optim.Adam(self.dcrnn_model.parameters(), lr=base_lr)
|
||||
|
||||
loss = self._compute_loss(y, output)
|
||||
|
||||
self._logger.debug(loss.item())
|
||||
|
|
@ -165,6 +170,9 @@ class DCRNNSupervisor:
|
|||
self._logger.info("evaluating now!")
|
||||
|
||||
val_loss = self.evaluate(dataset='val', batches_seen=batches_seen)
|
||||
|
||||
self.dcrnn_model = self.dcrnn_model.train()
|
||||
|
||||
end_time = time.time()
|
||||
|
||||
self._writer.add_scalar('training loss',
|
||||
|
|
|
|||
Loading…
Reference in New Issue