Refactor DCRNN Model.

This commit is contained in:
Yaguang 2018-09-30 21:53:40 -07:00
parent 2f2d748b45
commit 5dc36fed7c
2 changed files with 124 additions and 112 deletions

View File

@ -2,12 +2,11 @@ from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
import numpy as np
import tensorflow as tf import tensorflow as tf
from tensorflow.contrib import legacy_seq2seq from tensorflow.contrib import legacy_seq2seq
from lib.metrics import masked_mse_loss, masked_mae_loss, masked_rmse_loss from lib.metrics import masked_mae_loss
from model.dcrnn_cell import DCGRUCell from model.dcrnn_cell import DCGRUCell
@ -21,12 +20,6 @@ class DCRNNModel(object):
self._mae = None self._mae = None
self._train_op = None self._train_op = None
# Learning rate.
self._lr = tf.get_variable('learning_rate', shape=(), initializer=tf.constant_initializer(0.01),
trainable=False)
self._new_lr = tf.placeholder(tf.float32, shape=(), name='new_learning_rate')
self._lr_update = tf.assign(self._lr, self._new_lr, name='lr_update')
max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2)) max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2))
cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000)) cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000))
filter_type = model_kwargs.get('filter_type', 'laplacian') filter_type = model_kwargs.get('filter_type', 'laplacian')
@ -46,7 +39,8 @@ class DCRNNModel(object):
# Labels: (batch_size, timesteps, num_sensor, input_dim), same format with input except the temporal dimension. # Labels: (batch_size, timesteps, num_sensor, input_dim), same format with input except the temporal dimension.
self._labels = tf.placeholder(tf.float32, shape=(batch_size, horizon, num_nodes, input_dim), name='labels') self._labels = tf.placeholder(tf.float32, shape=(batch_size, horizon, num_nodes, input_dim), name='labels')
GO_SYMBOL = tf.zeros(shape=(batch_size, num_nodes * input_dim)) # GO_SYMBOL = tf.zeros(shape=(batch_size, num_nodes * input_dim))
GO_SYMBOL = tf.zeros(shape=(batch_size, num_nodes * output_dim))
cell = DCGRUCell(rnn_units, adj_mx, max_diffusion_step=max_diffusion_step, num_nodes=num_nodes, cell = DCGRUCell(rnn_units, adj_mx, max_diffusion_step=max_diffusion_step, num_nodes=num_nodes,
filter_type=filter_type) filter_type=filter_type)
@ -80,7 +74,7 @@ class DCRNNModel(object):
else: else:
# Return the prediction of the model in testing. # Return the prediction of the model in testing.
result = prev result = prev
if aux_dim > 0: if False and aux_dim > 0:
result = tf.reshape(result, (batch_size, num_nodes, output_dim)) result = tf.reshape(result, (batch_size, num_nodes, output_dim))
result = tf.concat([result, aux_info[i]], axis=-1) result = tf.concat([result, aux_info[i]], axis=-1)
result = tf.reshape(result, (batch_size, num_nodes * input_dim)) result = tf.reshape(result, (batch_size, num_nodes * input_dim))
@ -93,20 +87,6 @@ class DCRNNModel(object):
# Project the output to output_dim. # Project the output to output_dim.
outputs = tf.stack(outputs[:-1], axis=1) outputs = tf.stack(outputs[:-1], axis=1)
self._outputs = tf.reshape(outputs, (batch_size, horizon, num_nodes, output_dim), name='outputs') self._outputs = tf.reshape(outputs, (batch_size, horizon, num_nodes, output_dim), name='outputs')
preds = self._outputs
labels = self._labels[..., :output_dim]
null_val = 0.
self._mae = masked_mae_loss(self._scaler, null_val)(preds=preds, labels=labels)
self._loss = masked_mae_loss(self._scaler, null_val)(preds=preds, labels=labels)
if is_training:
optimizer = tf.train.AdamOptimizer(self._lr)
tvars = tf.trainable_variables()
grads = tf.gradients(self._loss, tvars)
grads, _ = tf.clip_by_global_norm(grads, max_grad_norm)
self._train_op = optimizer.apply_gradients(zip(grads, tvars), global_step=global_step, name='train_op')
self._merged = tf.summary.merge_all() self._merged = tf.summary.merge_all()
@staticmethod @staticmethod
@ -119,61 +99,6 @@ class DCRNNModel(object):
""" """
return tf.cast(k / (k + tf.exp(global_step / k)), tf.float32) return tf.cast(k / (k + tf.exp(global_step / k)), tf.float32)
@staticmethod
def run_epoch_generator(sess, model, data_generator, return_output=False, train_op=None, writer=None):
losses = []
maes = []
outputs = []
fetches = {
'mae': model.mae,
'loss': model.loss,
'global_step': tf.train.get_or_create_global_step()
}
if train_op:
fetches.update({
'train_op': train_op,
})
merged = model.merged
if merged is not None:
fetches.update({'merged': merged})
if return_output:
fetches.update({
'outputs': model.outputs
})
for _, (x, y) in enumerate(data_generator):
feed_dict = {
model.inputs: x,
model.labels: y,
}
vals = sess.run(fetches, feed_dict=feed_dict)
losses.append(vals['loss'])
maes.append(vals['mae'])
if writer is not None and 'merged' in vals:
writer.add_summary(vals['merged'], global_step=vals['global_step'])
if return_output:
outputs.append(vals['outputs'])
results = {
'loss': np.mean(losses),
'mae': np.mean(maes)
}
if return_output:
results['outputs'] = outputs
return results
def get_lr(self, sess):
return np.asscalar(sess.run(self._lr))
def set_lr(self, sess, lr):
sess.run(self._lr_update, feed_dict={
self._new_lr: lr
})
@property @property
def inputs(self): def inputs(self):
return self._inputs return self._inputs
@ -186,10 +111,6 @@ class DCRNNModel(object):
def loss(self): def loss(self):
return self._loss return self._loss
@property
def lr(self):
return self._lr
@property @property
def mae(self): def mae(self):
return self._mae return self._mae
@ -201,7 +122,3 @@ class DCRNNModel(object):
@property @property
def outputs(self): def outputs(self):
return self._outputs return self._outputs
@property
def train_op(self):
return self._train_op

View File

@ -10,6 +10,8 @@ import time
import yaml import yaml
from lib import utils, metrics from lib import utils, metrics
from lib.AMSGrad import AMSGrad
from lib.metrics import masked_mae_loss
from lib.utils import StandardScaler, DataLoader from lib.utils import StandardScaler, DataLoader
from model.dcrnn_model import DCRNNModel from model.dcrnn_model import DCRNNModel
@ -29,7 +31,7 @@ class DCRNNSupervisor(object):
# logging. # logging.
self._log_dir = self._get_log_dir(kwargs) self._log_dir = self._get_log_dir(kwargs)
self._logger = utils.get_logger(self.log_dir, __name__, 'info.log') self._logger = utils.get_logger(self._log_dir, __name__, 'info.log')
self._writer = tf.summary.FileWriter(self._log_dir) self._writer = tf.summary.FileWriter(self._log_dir)
self._logger.info(kwargs) self._logger.info(kwargs)
@ -61,6 +63,37 @@ class DCRNNSupervisor(object):
batch_size=self._data_kwargs['test_batch_size'], batch_size=self._data_kwargs['test_batch_size'],
adj_mx=adj_mx, **self._model_kwargs) adj_mx=adj_mx, **self._model_kwargs)
# Calculate loss
output_dim = self._model_kwargs.get('output_dim')
preds = self._train_model.outputs
labels = self._train_model.labels[..., :output_dim]
null_val = 0.
self._loss_fn = masked_mae_loss(scaler, null_val)
self._train_loss = self._loss_fn(preds=preds, labels=labels)
# Learning rate.
self._lr = tf.get_variable('learning_rate', shape=(), initializer=tf.constant_initializer(0.01),
trainable=False)
self._new_lr = tf.placeholder(tf.float32, shape=(), name='new_learning_rate')
self._lr_update = tf.assign(self._lr, self._new_lr, name='lr_update')
# Configure optimizer
optimizer_name = self._train_kwargs.get('optimizer', 'adam').lower()
epsilon = float(self._train_kwargs.get('epsilon', 1e-3))
optimizer = tf.train.AdamOptimizer(self._lr, epsilon=epsilon)
if optimizer_name == 'sgd':
optimizer = tf.train.GradientDescentOptimizer(self._lr, )
elif optimizer_name == 'amsgrad':
optimizer = AMSGrad(self._lr, epsilon=epsilon)
tvars = tf.trainable_variables()
grads = tf.gradients(self._train_loss, tvars)
max_grad_norm = kwargs['train'].get('max_grad_norm', 1.)
grads, _ = tf.clip_by_global_norm(grads, max_grad_norm)
global_step = tf.train.get_or_create_global_step()
self._train_op = optimizer.apply_gradients(zip(grads, tvars), global_step=global_step, name='train_op')
# Log model statistics. # Log model statistics.
total_trainable_parameter = utils.get_total_trainable_parameter_size() total_trainable_parameter = utils.get_total_trainable_parameter_size()
self._logger.info('Total number of trainable parameters: %d' % total_trainable_parameter) self._logger.info('Total number of trainable parameters: %d' % total_trainable_parameter)
@ -114,6 +147,63 @@ class DCRNNSupervisor(object):
return data return data
def run_epoch_generator(self, sess, model, data_generator, return_output=False, training=False, writer=None):
losses = []
maes = []
outputs = []
output_dim = self._model_kwargs.get('output_dim')
preds = model.outputs
labels = model.labels[..., :output_dim]
loss = self._loss_fn(preds=preds, labels=labels)
fetches = {
'loss': loss,
'mae': loss,
'global_step': tf.train.get_or_create_global_step()
}
if training:
fetches.update({
'train_op': self._train_op
})
merged = model.merged
if merged is not None:
fetches.update({'merged': merged})
if return_output:
fetches.update({
'outputs': model.outputs
})
for _, (x, y) in enumerate(data_generator):
feed_dict = {
model.inputs: x,
model.labels: y,
}
vals = sess.run(fetches, feed_dict=feed_dict)
losses.append(vals['loss'])
maes.append(vals['mae'])
if writer is not None and 'merged' in vals:
writer.add_summary(vals['merged'], global_step=vals['global_step'])
if return_output:
outputs.append(vals['outputs'])
results = {
'loss': np.mean(losses),
'mae': np.mean(maes)
}
if return_output:
results['outputs'] = outputs
return results
def get_lr(self, sess):
return np.asscalar(sess.run(self._lr))
def set_lr(self, sess, lr):
sess.run(self._lr_update, feed_dict={
self._new_lr: lr
})
def train(self, sess, **kwargs): def train(self, sess, **kwargs):
kwargs.update(self._train_kwargs) kwargs.update(self._train_kwargs)
return self._train(sess, **kwargs) return self._train(sess, **kwargs)
@ -133,16 +223,17 @@ class DCRNNSupervisor(object):
self._epoch = epoch + 1 self._epoch = epoch + 1
else: else:
sess.run(tf.global_variables_initializer()) sess.run(tf.global_variables_initializer())
self._logger.info('Start training ...')
while self._epoch <= epochs: while self._epoch <= epochs:
# Learning rate schedule. # Learning rate schedule.
new_lr = max(min_learning_rate, base_lr * (lr_decay_ratio ** np.sum(self._epoch >= np.array(steps)))) new_lr = max(min_learning_rate, base_lr * (lr_decay_ratio ** np.sum(self._epoch >= np.array(steps))))
self._train_model.set_lr(sess=sess, lr=new_lr) self.set_lr(sess=sess, lr=new_lr)
sys.stdout.flush()
start_time = time.time() start_time = time.time()
train_results = self._train_model.run_epoch_generator(sess, self._train_model, train_results = self.run_epoch_generator(sess, self._train_model,
self._data['train_loader'].get_iterator(), self._data['train_loader'].get_iterator(),
train_op=self._train_model.train_op, training=True,
writer=self._writer) writer=self._writer)
train_loss, train_mae = train_results['loss'], train_results['mae'] train_loss, train_mae = train_results['loss'], train_results['mae']
if train_loss > 1e5: if train_loss > 1e5:
@ -151,17 +242,17 @@ class DCRNNSupervisor(object):
global_step = sess.run(tf.train.get_or_create_global_step()) global_step = sess.run(tf.train.get_or_create_global_step())
# Compute validation error. # Compute validation error.
val_results = self._val_model.run_epoch_generator(sess, self._val_model, val_results = self.run_epoch_generator(sess, self._val_model,
self._data['val_loader'].get_iterator(), self._data['val_loader'].get_iterator(),
train_op=None) training=False)
val_loss, val_mae = val_results['loss'], val_results['mae'] val_loss, val_mae = val_results['loss'], val_results['mae']
utils.add_simple_summary(self._writer, utils.add_simple_summary(self._writer,
['loss/train_loss', 'metric/train_mae', 'loss/val_loss', 'metric/val_mae'], ['loss/train_loss', 'metric/train_mae', 'loss/val_loss', 'metric/val_mae'],
[train_loss, train_mae, val_loss, val_mae], global_step=global_step) [train_loss, train_mae, val_loss, val_mae], global_step=global_step)
end_time = time.time() end_time = time.time()
message = 'Epoch [{}] ({}) train_mae: {:.4f}, val_mae: {:.4f} lr:{:.6f} {:.1f}s'.format( message = 'Epoch [{}/{}] ({}) train_mae: {:.4f}, val_mae: {:.4f} lr:{:.6f} {:.1f}s'.format(
self._epoch, global_step, train_mae, val_mae, new_lr, (end_time - start_time)) self._epoch, epochs, global_step, train_mae, val_mae, new_lr, (end_time - start_time))
self._logger.info(message) self._logger.info(message)
if self._epoch % test_every_n_epochs == test_every_n_epochs - 1: if self._epoch % test_every_n_epochs == test_every_n_epochs - 1:
self.test_and_write_result(sess, global_step) self.test_and_write_result(sess, global_step)
@ -186,9 +277,10 @@ class DCRNNSupervisor(object):
return np.min(history) return np.min(history)
def test_and_write_result(self, sess, global_step, **kwargs): def test_and_write_result(self, sess, global_step, **kwargs):
test_results = self._test_model.run_epoch_generator(sess, self._test_model, test_results = self.run_epoch_generator(sess, self._test_model,
self._data['test_loader'].get_iterator(), self._data['test_loader'].get_iterator(),
return_output=True, train_op=None) return_output=True,
training=False)
# y_preds: a list of (batch_size, horizon, num_nodes, output_dim) # y_preds: a list of (batch_size, horizon, num_nodes, output_dim)
test_loss, y_preds = test_results['loss'], test_results['outputs'] test_loss, y_preds = test_results['loss'], test_results['outputs']
@ -196,14 +288,17 @@ class DCRNNSupervisor(object):
y_preds = np.concatenate(y_preds, axis=0) y_preds = np.concatenate(y_preds, axis=0)
scaler = self._data['scaler'] scaler = self._data['scaler']
outputs = [] predictions = []
y_truths = []
for horizon_i in range(self._data['y_test'].shape[1]): for horizon_i in range(self._data['y_test'].shape[1]):
y_truth = np.concatenate(self._data['y_test'][:, horizon_i, :, 0], axis=0) y_truth = self._data['y_test'][:, horizon_i, :, 0]
y_truth = scaler.inverse_transform(y_truth) y_truth = scaler.inverse_transform(y_truth)
y_pred = np.concatenate(y_preds[:, horizon_i, :, 0], axis=0) y_truths.append(y_truth)
y_pred = y_pred[:y_truth.shape[0], ...] # Only take the batch number
y_pred = y_preds[:y_truth.shape[0], horizon_i, :, 0]
y_pred = scaler.inverse_transform(y_pred) y_pred = scaler.inverse_transform(y_pred)
outputs.append(y_pred) predictions.append(y_pred)
mae = metrics.masked_mae_np(y_pred, y_truth, null_val=0) mae = metrics.masked_mae_np(y_pred, y_truth, null_val=0)
mape = metrics.masked_mape_np(y_pred, y_truth, null_val=0) mape = metrics.masked_mape_np(y_pred, y_truth, null_val=0)
rmse = metrics.masked_rmse_np(y_pred, y_truth, null_val=0) rmse = metrics.masked_rmse_np(y_pred, y_truth, null_val=0)
@ -217,7 +312,11 @@ class DCRNNSupervisor(object):
['metric/rmse', 'metric/mape', 'metric/mae']], ['metric/rmse', 'metric/mape', 'metric/mae']],
[rmse, mape, mae], [rmse, mape, mae],
global_step=global_step) global_step=global_step)
return y_preds outputs = {
'predictions': predictions,
'groundtruth': y_truths
}
return outputs
@staticmethod @staticmethod
def restore(sess, config): def restore(sess, config):
@ -245,7 +344,3 @@ class DCRNNSupervisor(object):
with open(os.path.join(self._log_dir, config_filename), 'w') as f: with open(os.path.join(self._log_dir, config_filename), 'w') as f:
yaml.dump(config, f, default_flow_style=False) yaml.dump(config, f, default_flow_style=False)
return config['train']['model_filename'] return config['train']['model_filename']
@property
def log_dir(self):
return self._log_dir