Refactor DCRNN Model.
This commit is contained in:
parent
2f2d748b45
commit
5dc36fed7c
|
|
@ -2,12 +2,11 @@ from __future__ import absolute_import
|
|||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow.contrib import legacy_seq2seq
|
||||
|
||||
from lib.metrics import masked_mse_loss, masked_mae_loss, masked_rmse_loss
|
||||
from lib.metrics import masked_mae_loss
|
||||
from model.dcrnn_cell import DCGRUCell
|
||||
|
||||
|
||||
|
|
@ -21,12 +20,6 @@ class DCRNNModel(object):
|
|||
self._mae = None
|
||||
self._train_op = None
|
||||
|
||||
# Learning rate.
|
||||
self._lr = tf.get_variable('learning_rate', shape=(), initializer=tf.constant_initializer(0.01),
|
||||
trainable=False)
|
||||
self._new_lr = tf.placeholder(tf.float32, shape=(), name='new_learning_rate')
|
||||
self._lr_update = tf.assign(self._lr, self._new_lr, name='lr_update')
|
||||
|
||||
max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2))
|
||||
cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000))
|
||||
filter_type = model_kwargs.get('filter_type', 'laplacian')
|
||||
|
|
@ -46,7 +39,8 @@ class DCRNNModel(object):
|
|||
# Labels: (batch_size, timesteps, num_sensor, input_dim), same format with input except the temporal dimension.
|
||||
self._labels = tf.placeholder(tf.float32, shape=(batch_size, horizon, num_nodes, input_dim), name='labels')
|
||||
|
||||
GO_SYMBOL = tf.zeros(shape=(batch_size, num_nodes * input_dim))
|
||||
# GO_SYMBOL = tf.zeros(shape=(batch_size, num_nodes * input_dim))
|
||||
GO_SYMBOL = tf.zeros(shape=(batch_size, num_nodes * output_dim))
|
||||
|
||||
cell = DCGRUCell(rnn_units, adj_mx, max_diffusion_step=max_diffusion_step, num_nodes=num_nodes,
|
||||
filter_type=filter_type)
|
||||
|
|
@ -80,7 +74,7 @@ class DCRNNModel(object):
|
|||
else:
|
||||
# Return the prediction of the model in testing.
|
||||
result = prev
|
||||
if aux_dim > 0:
|
||||
if False and aux_dim > 0:
|
||||
result = tf.reshape(result, (batch_size, num_nodes, output_dim))
|
||||
result = tf.concat([result, aux_info[i]], axis=-1)
|
||||
result = tf.reshape(result, (batch_size, num_nodes * input_dim))
|
||||
|
|
@ -93,20 +87,6 @@ class DCRNNModel(object):
|
|||
# Project the output to output_dim.
|
||||
outputs = tf.stack(outputs[:-1], axis=1)
|
||||
self._outputs = tf.reshape(outputs, (batch_size, horizon, num_nodes, output_dim), name='outputs')
|
||||
|
||||
preds = self._outputs
|
||||
labels = self._labels[..., :output_dim]
|
||||
|
||||
null_val = 0.
|
||||
self._mae = masked_mae_loss(self._scaler, null_val)(preds=preds, labels=labels)
|
||||
self._loss = masked_mae_loss(self._scaler, null_val)(preds=preds, labels=labels)
|
||||
if is_training:
|
||||
optimizer = tf.train.AdamOptimizer(self._lr)
|
||||
tvars = tf.trainable_variables()
|
||||
grads = tf.gradients(self._loss, tvars)
|
||||
grads, _ = tf.clip_by_global_norm(grads, max_grad_norm)
|
||||
self._train_op = optimizer.apply_gradients(zip(grads, tvars), global_step=global_step, name='train_op')
|
||||
|
||||
self._merged = tf.summary.merge_all()
|
||||
|
||||
@staticmethod
|
||||
|
|
@ -119,61 +99,6 @@ class DCRNNModel(object):
|
|||
"""
|
||||
return tf.cast(k / (k + tf.exp(global_step / k)), tf.float32)
|
||||
|
||||
@staticmethod
|
||||
def run_epoch_generator(sess, model, data_generator, return_output=False, train_op=None, writer=None):
|
||||
losses = []
|
||||
maes = []
|
||||
outputs = []
|
||||
|
||||
fetches = {
|
||||
'mae': model.mae,
|
||||
'loss': model.loss,
|
||||
'global_step': tf.train.get_or_create_global_step()
|
||||
}
|
||||
if train_op:
|
||||
fetches.update({
|
||||
'train_op': train_op,
|
||||
})
|
||||
merged = model.merged
|
||||
if merged is not None:
|
||||
fetches.update({'merged': merged})
|
||||
|
||||
if return_output:
|
||||
fetches.update({
|
||||
'outputs': model.outputs
|
||||
})
|
||||
|
||||
for _, (x, y) in enumerate(data_generator):
|
||||
feed_dict = {
|
||||
model.inputs: x,
|
||||
model.labels: y,
|
||||
}
|
||||
|
||||
vals = sess.run(fetches, feed_dict=feed_dict)
|
||||
|
||||
losses.append(vals['loss'])
|
||||
maes.append(vals['mae'])
|
||||
if writer is not None and 'merged' in vals:
|
||||
writer.add_summary(vals['merged'], global_step=vals['global_step'])
|
||||
if return_output:
|
||||
outputs.append(vals['outputs'])
|
||||
|
||||
results = {
|
||||
'loss': np.mean(losses),
|
||||
'mae': np.mean(maes)
|
||||
}
|
||||
if return_output:
|
||||
results['outputs'] = outputs
|
||||
return results
|
||||
|
||||
def get_lr(self, sess):
|
||||
return np.asscalar(sess.run(self._lr))
|
||||
|
||||
def set_lr(self, sess, lr):
|
||||
sess.run(self._lr_update, feed_dict={
|
||||
self._new_lr: lr
|
||||
})
|
||||
|
||||
@property
|
||||
def inputs(self):
|
||||
return self._inputs
|
||||
|
|
@ -186,10 +111,6 @@ class DCRNNModel(object):
|
|||
def loss(self):
|
||||
return self._loss
|
||||
|
||||
@property
|
||||
def lr(self):
|
||||
return self._lr
|
||||
|
||||
@property
|
||||
def mae(self):
|
||||
return self._mae
|
||||
|
|
@ -201,7 +122,3 @@ class DCRNNModel(object):
|
|||
@property
|
||||
def outputs(self):
|
||||
return self._outputs
|
||||
|
||||
@property
|
||||
def train_op(self):
|
||||
return self._train_op
|
||||
|
|
|
|||
|
|
@ -10,6 +10,8 @@ import time
|
|||
import yaml
|
||||
|
||||
from lib import utils, metrics
|
||||
from lib.AMSGrad import AMSGrad
|
||||
from lib.metrics import masked_mae_loss
|
||||
from lib.utils import StandardScaler, DataLoader
|
||||
|
||||
from model.dcrnn_model import DCRNNModel
|
||||
|
|
@ -29,7 +31,7 @@ class DCRNNSupervisor(object):
|
|||
|
||||
# logging.
|
||||
self._log_dir = self._get_log_dir(kwargs)
|
||||
self._logger = utils.get_logger(self.log_dir, __name__, 'info.log')
|
||||
self._logger = utils.get_logger(self._log_dir, __name__, 'info.log')
|
||||
self._writer = tf.summary.FileWriter(self._log_dir)
|
||||
self._logger.info(kwargs)
|
||||
|
||||
|
|
@ -61,6 +63,37 @@ class DCRNNSupervisor(object):
|
|||
batch_size=self._data_kwargs['test_batch_size'],
|
||||
adj_mx=adj_mx, **self._model_kwargs)
|
||||
|
||||
# Calculate loss
|
||||
output_dim = self._model_kwargs.get('output_dim')
|
||||
preds = self._train_model.outputs
|
||||
labels = self._train_model.labels[..., :output_dim]
|
||||
|
||||
null_val = 0.
|
||||
self._loss_fn = masked_mae_loss(scaler, null_val)
|
||||
self._train_loss = self._loss_fn(preds=preds, labels=labels)
|
||||
|
||||
# Learning rate.
|
||||
self._lr = tf.get_variable('learning_rate', shape=(), initializer=tf.constant_initializer(0.01),
|
||||
trainable=False)
|
||||
self._new_lr = tf.placeholder(tf.float32, shape=(), name='new_learning_rate')
|
||||
self._lr_update = tf.assign(self._lr, self._new_lr, name='lr_update')
|
||||
|
||||
# Configure optimizer
|
||||
optimizer_name = self._train_kwargs.get('optimizer', 'adam').lower()
|
||||
epsilon = float(self._train_kwargs.get('epsilon', 1e-3))
|
||||
optimizer = tf.train.AdamOptimizer(self._lr, epsilon=epsilon)
|
||||
if optimizer_name == 'sgd':
|
||||
optimizer = tf.train.GradientDescentOptimizer(self._lr, )
|
||||
elif optimizer_name == 'amsgrad':
|
||||
optimizer = AMSGrad(self._lr, epsilon=epsilon)
|
||||
|
||||
tvars = tf.trainable_variables()
|
||||
grads = tf.gradients(self._train_loss, tvars)
|
||||
max_grad_norm = kwargs['train'].get('max_grad_norm', 1.)
|
||||
grads, _ = tf.clip_by_global_norm(grads, max_grad_norm)
|
||||
global_step = tf.train.get_or_create_global_step()
|
||||
self._train_op = optimizer.apply_gradients(zip(grads, tvars), global_step=global_step, name='train_op')
|
||||
|
||||
# Log model statistics.
|
||||
total_trainable_parameter = utils.get_total_trainable_parameter_size()
|
||||
self._logger.info('Total number of trainable parameters: %d' % total_trainable_parameter)
|
||||
|
|
@ -114,6 +147,63 @@ class DCRNNSupervisor(object):
|
|||
|
||||
return data
|
||||
|
||||
def run_epoch_generator(self, sess, model, data_generator, return_output=False, training=False, writer=None):
|
||||
losses = []
|
||||
maes = []
|
||||
outputs = []
|
||||
output_dim = self._model_kwargs.get('output_dim')
|
||||
preds = model.outputs
|
||||
labels = model.labels[..., :output_dim]
|
||||
loss = self._loss_fn(preds=preds, labels=labels)
|
||||
fetches = {
|
||||
'loss': loss,
|
||||
'mae': loss,
|
||||
'global_step': tf.train.get_or_create_global_step()
|
||||
}
|
||||
if training:
|
||||
fetches.update({
|
||||
'train_op': self._train_op
|
||||
})
|
||||
merged = model.merged
|
||||
if merged is not None:
|
||||
fetches.update({'merged': merged})
|
||||
|
||||
if return_output:
|
||||
fetches.update({
|
||||
'outputs': model.outputs
|
||||
})
|
||||
|
||||
for _, (x, y) in enumerate(data_generator):
|
||||
feed_dict = {
|
||||
model.inputs: x,
|
||||
model.labels: y,
|
||||
}
|
||||
|
||||
vals = sess.run(fetches, feed_dict=feed_dict)
|
||||
|
||||
losses.append(vals['loss'])
|
||||
maes.append(vals['mae'])
|
||||
if writer is not None and 'merged' in vals:
|
||||
writer.add_summary(vals['merged'], global_step=vals['global_step'])
|
||||
if return_output:
|
||||
outputs.append(vals['outputs'])
|
||||
|
||||
results = {
|
||||
'loss': np.mean(losses),
|
||||
'mae': np.mean(maes)
|
||||
}
|
||||
if return_output:
|
||||
results['outputs'] = outputs
|
||||
return results
|
||||
|
||||
def get_lr(self, sess):
|
||||
return np.asscalar(sess.run(self._lr))
|
||||
|
||||
def set_lr(self, sess, lr):
|
||||
sess.run(self._lr_update, feed_dict={
|
||||
self._new_lr: lr
|
||||
})
|
||||
|
||||
def train(self, sess, **kwargs):
|
||||
kwargs.update(self._train_kwargs)
|
||||
return self._train(sess, **kwargs)
|
||||
|
|
@ -133,16 +223,17 @@ class DCRNNSupervisor(object):
|
|||
self._epoch = epoch + 1
|
||||
else:
|
||||
sess.run(tf.global_variables_initializer())
|
||||
self._logger.info('Start training ...')
|
||||
|
||||
while self._epoch <= epochs:
|
||||
# Learning rate schedule.
|
||||
new_lr = max(min_learning_rate, base_lr * (lr_decay_ratio ** np.sum(self._epoch >= np.array(steps))))
|
||||
self._train_model.set_lr(sess=sess, lr=new_lr)
|
||||
sys.stdout.flush()
|
||||
self.set_lr(sess=sess, lr=new_lr)
|
||||
|
||||
start_time = time.time()
|
||||
train_results = self._train_model.run_epoch_generator(sess, self._train_model,
|
||||
train_results = self.run_epoch_generator(sess, self._train_model,
|
||||
self._data['train_loader'].get_iterator(),
|
||||
train_op=self._train_model.train_op,
|
||||
training=True,
|
||||
writer=self._writer)
|
||||
train_loss, train_mae = train_results['loss'], train_results['mae']
|
||||
if train_loss > 1e5:
|
||||
|
|
@ -151,17 +242,17 @@ class DCRNNSupervisor(object):
|
|||
|
||||
global_step = sess.run(tf.train.get_or_create_global_step())
|
||||
# Compute validation error.
|
||||
val_results = self._val_model.run_epoch_generator(sess, self._val_model,
|
||||
val_results = self.run_epoch_generator(sess, self._val_model,
|
||||
self._data['val_loader'].get_iterator(),
|
||||
train_op=None)
|
||||
training=False)
|
||||
val_loss, val_mae = val_results['loss'], val_results['mae']
|
||||
|
||||
utils.add_simple_summary(self._writer,
|
||||
['loss/train_loss', 'metric/train_mae', 'loss/val_loss', 'metric/val_mae'],
|
||||
[train_loss, train_mae, val_loss, val_mae], global_step=global_step)
|
||||
end_time = time.time()
|
||||
message = 'Epoch [{}] ({}) train_mae: {:.4f}, val_mae: {:.4f} lr:{:.6f} {:.1f}s'.format(
|
||||
self._epoch, global_step, train_mae, val_mae, new_lr, (end_time - start_time))
|
||||
message = 'Epoch [{}/{}] ({}) train_mae: {:.4f}, val_mae: {:.4f} lr:{:.6f} {:.1f}s'.format(
|
||||
self._epoch, epochs, global_step, train_mae, val_mae, new_lr, (end_time - start_time))
|
||||
self._logger.info(message)
|
||||
if self._epoch % test_every_n_epochs == test_every_n_epochs - 1:
|
||||
self.test_and_write_result(sess, global_step)
|
||||
|
|
@ -186,9 +277,10 @@ class DCRNNSupervisor(object):
|
|||
return np.min(history)
|
||||
|
||||
def test_and_write_result(self, sess, global_step, **kwargs):
|
||||
test_results = self._test_model.run_epoch_generator(sess, self._test_model,
|
||||
test_results = self.run_epoch_generator(sess, self._test_model,
|
||||
self._data['test_loader'].get_iterator(),
|
||||
return_output=True, train_op=None)
|
||||
return_output=True,
|
||||
training=False)
|
||||
|
||||
# y_preds: a list of (batch_size, horizon, num_nodes, output_dim)
|
||||
test_loss, y_preds = test_results['loss'], test_results['outputs']
|
||||
|
|
@ -196,14 +288,17 @@ class DCRNNSupervisor(object):
|
|||
|
||||
y_preds = np.concatenate(y_preds, axis=0)
|
||||
scaler = self._data['scaler']
|
||||
outputs = []
|
||||
predictions = []
|
||||
y_truths = []
|
||||
for horizon_i in range(self._data['y_test'].shape[1]):
|
||||
y_truth = np.concatenate(self._data['y_test'][:, horizon_i, :, 0], axis=0)
|
||||
y_truth = self._data['y_test'][:, horizon_i, :, 0]
|
||||
y_truth = scaler.inverse_transform(y_truth)
|
||||
y_pred = np.concatenate(y_preds[:, horizon_i, :, 0], axis=0)
|
||||
y_pred = y_pred[:y_truth.shape[0], ...] # Only take the batch number
|
||||
y_truths.append(y_truth)
|
||||
|
||||
y_pred = y_preds[:y_truth.shape[0], horizon_i, :, 0]
|
||||
y_pred = scaler.inverse_transform(y_pred)
|
||||
outputs.append(y_pred)
|
||||
predictions.append(y_pred)
|
||||
|
||||
mae = metrics.masked_mae_np(y_pred, y_truth, null_val=0)
|
||||
mape = metrics.masked_mape_np(y_pred, y_truth, null_val=0)
|
||||
rmse = metrics.masked_rmse_np(y_pred, y_truth, null_val=0)
|
||||
|
|
@ -217,7 +312,11 @@ class DCRNNSupervisor(object):
|
|||
['metric/rmse', 'metric/mape', 'metric/mae']],
|
||||
[rmse, mape, mae],
|
||||
global_step=global_step)
|
||||
return y_preds
|
||||
outputs = {
|
||||
'predictions': predictions,
|
||||
'groundtruth': y_truths
|
||||
}
|
||||
return outputs
|
||||
|
||||
@staticmethod
|
||||
def restore(sess, config):
|
||||
|
|
@ -245,7 +344,3 @@ class DCRNNSupervisor(object):
|
|||
with open(os.path.join(self._log_dir, config_filename), 'w') as f:
|
||||
yaml.dump(config, f, default_flow_style=False)
|
||||
return config['train']['model_filename']
|
||||
|
||||
@property
|
||||
def log_dir(self):
|
||||
return self._log_dir
|
||||
|
|
|
|||
Loading…
Reference in New Issue