Implemented Encoder with GRU - should swap GRU with DCGRU

This commit is contained in:
Chintan Shah 2019-09-29 12:51:49 -04:00
parent 69d6c0e053
commit 66fb202d21
9 changed files with 46 additions and 5 deletions

View File

@ -7,7 +7,7 @@ import tensorflow as tf
import yaml
from lib.utils import load_graph_data
from model.dcrnn_supervisor import DCRNNSupervisor
from model.tf.dcrnn_supervisor import DCRNNSupervisor
def main(args):

View File

View File

@ -0,0 +1,41 @@
import torch
import torch.nn as nn
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class DCRNNModel(nn.Module):
def __init__(self, is_training, scale_factor, adj_mx, **model_kwargs):
super().__init__()
self.adj_mx = adj_mx
self.is_training = is_training
self.scale_factor = scale_factor
self.max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2))
self.cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000))
self.filter_type = model_kwargs.get('filter_type', 'laplacian')
self.horizon = int(model_kwargs.get('horizon', 1)) # for the decoder
# self.max_grad_norm = float(model_kwargs.get('max_grad_norm', 5.0))
self.num_nodes = int(model_kwargs.get('num_nodes', 1))
self.num_rnn_layers = int(model_kwargs.get('num_rnn_layers', 1))
self.rnn_units = int(model_kwargs.get('rnn_units'))
self.seq_len = int(model_kwargs.get('seq_len')) # for the encoder
self.use_curriculum_learning = bool(model_kwargs.get('use_curriculum_learning', False))
self.input_dim = int(model_kwargs.get('input_dim', 1))
self.output_dim = int(model_kwargs.get('output_dim', 1))
class EncoderModel(DCRNNModel):
def __init__(self, is_training, scaler, adj_mx, **model_kwargs):
super().__init__(is_training, scaler, adj_mx, **model_kwargs)
# https://pytorch.org/docs/stable/nn.html#gru
# since input shape is Input (batch_size, timesteps, num_sensor*input_dim),batch_first=True
self.dcgru = nn.GRU(input_size=self.num_nodes * self.input_dim,
hidden_size=self.rnn_units,
num_layers=self.num_rnn_layers,
batch_first=True)
def forward(self, inputs, hidden_state=None):
# is None okay?
return self.dcgru(inputs, hidden_state)

0
model/tf/__init__.py Normal file
View File

View File

@ -6,8 +6,7 @@ import tensorflow as tf
from tensorflow.contrib import legacy_seq2seq
from lib.metrics import masked_mae_loss
from model.dcrnn_cell import DCGRUCell
from model.tf.dcrnn_cell import DCGRUCell
class DCRNNModel(object):

View File

@ -13,7 +13,7 @@ from lib import utils, metrics
from lib.AMSGrad import AMSGrad
from lib.metrics import masked_mae_loss
from model.dcrnn_model import DCRNNModel
from model.tf.dcrnn_model import DCRNNModel
class DCRNNSupervisor(object):

View File

@ -1,3 +1,4 @@
torch
scipy>=0.19.0
numpy>=1.12.1
pandas>=0.19.2

View File

@ -6,7 +6,7 @@ import tensorflow as tf
import yaml
from lib.utils import load_graph_data
from model.dcrnn_supervisor import DCRNNSupervisor
from model.tf.dcrnn_supervisor import DCRNNSupervisor
def run_dcrnn(args):