Simplified encoder decoder model and moved curriculum learning outside
This commit is contained in:
parent
a1c9af2bad
commit
69288460b1
|
|
@ -1,12 +1,10 @@
|
|||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
|
||||
class DCRNNModel(metaclass=ABC):
|
||||
class DCRNNModel:
|
||||
def __init__(self, is_training, scale_factor, adj_mx, **model_kwargs):
|
||||
super().__init__()
|
||||
self.adj_mx = adj_mx
|
||||
|
|
@ -22,56 +20,6 @@ class DCRNNModel(metaclass=ABC):
|
|||
self.input_dim = int(model_kwargs.get('input_dim', 1))
|
||||
self.hidden_state_size = self.num_nodes * self.rnn_units
|
||||
|
||||
@abstractmethod
|
||||
@property
|
||||
def dcgru_layers(self):
|
||||
pass
|
||||
|
||||
def _forward_cell(self, cell_input, prev_hidden_states):
|
||||
"""
|
||||
Runs for 1 time step through all layers.
|
||||
:param cell_input: shape (batch_size, input feature size)
|
||||
:param prev_hidden_states: (num_layers, batch_size, hidden size)
|
||||
:return: output of cell: shape(batch_size, hidden size)
|
||||
all hidden states from layer: shape(num_layers, batch_size, hidden size)
|
||||
"""
|
||||
hidden_states = []
|
||||
output = cell_input
|
||||
for layer_num, dcgru_layer in enumerate(self.dcgru_layers):
|
||||
hidden_state = dcgru_layer(output, prev_hidden_states[layer_num])
|
||||
hidden_states.append(hidden_state)
|
||||
output = hidden_state
|
||||
|
||||
return output, torch.cat(hidden_states, dim=1) # runs in O(num_layers) so not too slow #todo: check dim
|
||||
|
||||
def _forward_impl(self, inputs, hidden_state):
|
||||
"""
|
||||
forward pass.
|
||||
|
||||
:param inputs: shape (batch_size, timesteps, input_size)
|
||||
:param hidden_state: (num_layers, batch_size, self.hidden_state_size) -> optional, zeros if not provided
|
||||
:return: output: # shape (timesteps, batch_size, self.hidden_state_size)
|
||||
hidden_state # shape (num_layers, batch_size, self.hidden_state_size) (lower indices mean lower layers)
|
||||
"""
|
||||
batch_size, timesteps, _ = inputs.size()
|
||||
if hidden_state is None:
|
||||
hidden_state = torch.zeros((self.num_rnn_layers, batch_size, self.hidden_state_size),
|
||||
device=device)
|
||||
output = torch.empty((timesteps, batch_size, self.hidden_state_size))
|
||||
for t in range(timesteps):
|
||||
hidden_state = self.t_step_forward_pass(hidden_state, inputs, output, t)
|
||||
|
||||
output = output.permute(1, 0, 2)
|
||||
return output, hidden_state
|
||||
|
||||
@abstractmethod
|
||||
def t_step_forward_pass(self, hidden_state, inputs, output, t):
|
||||
"""
|
||||
Implements the forward pass for timestep t.
|
||||
"""
|
||||
# this is to accommodate curriculum learning
|
||||
pass
|
||||
|
||||
|
||||
class EncoderModel(nn.Module, DCRNNModel):
|
||||
def __init__(self, is_training, scaler, adj_mx, **model_kwargs):
|
||||
|
|
@ -79,14 +27,9 @@ class EncoderModel(nn.Module, DCRNNModel):
|
|||
# https://pytorch.org/docs/stable/nn.html#gru
|
||||
self.seq_len = int(model_kwargs.get('seq_len')) # for the encoder
|
||||
|
||||
def t_step_forward_pass(self, hidden_state, inputs, output, t):
|
||||
cell_input = inputs[:, t, :] # (batch_size, input_size)
|
||||
cell_output, hidden_state = self._forward_cell(cell_input, hidden_state)
|
||||
output[t] = cell_output
|
||||
return hidden_state
|
||||
|
||||
@property
|
||||
def dcgru_layers(self):
|
||||
# input shape is supposed to be Input (batch_size, timesteps, num_sensor*input_dim)
|
||||
# input shape is supposed to be Input (batch_size, num_sensor*input_dim)
|
||||
# first layer takes input shape and subsequent layer take input from the first layer
|
||||
return [nn.GRUCell(input_size=self.num_nodes * self.input_dim,
|
||||
hidden_size=self.hidden_state_size,
|
||||
|
|
@ -99,12 +42,23 @@ class EncoderModel(nn.Module, DCRNNModel):
|
|||
"""
|
||||
Encoder forward pass.
|
||||
|
||||
:param inputs: shape (batch_size, timesteps, num_nodes * input_dim)
|
||||
:param inputs: shape (batch_size, self.num_nodes * self.input_dim)
|
||||
:param hidden_state: (num_layers, batch_size, self.hidden_state_size) -> optional, zeros if not provided
|
||||
:return: output: # shape (timesteps, batch_size, self.hidden_state_size)
|
||||
:return: output: # shape (batch_size, self.hidden_state_size)
|
||||
hidden_state # shape (num_layers, batch_size, self.hidden_state_size) (lower indices mean lower layers)
|
||||
"""
|
||||
return self._forward_impl(inputs, hidden_state)
|
||||
batch_size, _ = inputs.size()
|
||||
if hidden_state is None:
|
||||
hidden_state = torch.zeros((self.num_rnn_layers, batch_size, self.hidden_state_size),
|
||||
device=device)
|
||||
hidden_states = []
|
||||
output = inputs
|
||||
for layer_num, dcgru_layer in enumerate(self.dcgru_layers):
|
||||
hidden_state = dcgru_layer(output, hidden_state)
|
||||
hidden_states.append(hidden_state)
|
||||
output = hidden_state
|
||||
|
||||
return output, torch.cat(hidden_states, dim=1) # runs in O(num_layers) so not too slow # todo: check dim
|
||||
|
||||
|
||||
class DecoderModel(nn.Module, DCRNNModel):
|
||||
|
|
@ -115,6 +69,7 @@ class DecoderModel(nn.Module, DCRNNModel):
|
|||
self.horizon = int(model_kwargs.get('horizon', 1)) # for the decoder
|
||||
self.projection_layer = nn.Linear(self.hidden_state_size, self.num_nodes * self.output_dim)
|
||||
|
||||
@property
|
||||
def dcgru_layers(self):
|
||||
return [nn.GRUCell(input_size=self.num_nodes * self.output_dim,
|
||||
hidden_size=self.hidden_state_size,
|
||||
|
|
@ -123,28 +78,25 @@ class DecoderModel(nn.Module, DCRNNModel):
|
|||
bias=True) for _ in
|
||||
range(self.num_rnn_layers - 1)]
|
||||
|
||||
def t_step_forward_pass(self, hidden_state, inputs, output, t):
|
||||
cell_input = inputs[:, t, :] # (batch_size, input_size)
|
||||
|
||||
if self.is_training:
|
||||
if t > 0 and self.use_curriculum_learning:
|
||||
c = np.random.uniform(0, 1)
|
||||
if c >= self._compute_sampling_threshold(): #todo
|
||||
cell_input = output[
|
||||
t - 1] # todo: this won't work because the linear layer is applied after forward_impl
|
||||
|
||||
cell_output, hidden_state = self._forward_cell(cell_input, hidden_state)
|
||||
output[t] = cell_output
|
||||
return hidden_state
|
||||
|
||||
def forward(self, inputs, hidden_state=None):
|
||||
"""
|
||||
Decoder forward pass.
|
||||
|
||||
:param inputs: shape (batch_size, timesteps, num_nodes * input_dim)
|
||||
:param inputs: shape (batch_size, self.num_nodes * self.output_dim)
|
||||
:param hidden_state: (num_layers, batch_size, self.hidden_state_size) -> optional, zeros if not provided
|
||||
:return: output: # shape (timesteps, batch_size, self.num_nodes * self.output_dim)
|
||||
:return: output: # shape (batch_size, self.num_nodes * self.output_dim)
|
||||
hidden_state # shape (num_layers, batch_size, self.hidden_state_size) (lower indices mean lower layers)
|
||||
"""
|
||||
output, hidden = self._forward_impl(inputs, hidden_state)
|
||||
return self.projection_layer(output), hidden_state
|
||||
batch_size, _ = inputs.size()
|
||||
if hidden_state is None:
|
||||
hidden_state = torch.zeros((self.num_rnn_layers, batch_size, self.hidden_state_size),
|
||||
device=device)
|
||||
hidden_states = []
|
||||
output = inputs
|
||||
for layer_num, dcgru_layer in enumerate(self.dcgru_layers):
|
||||
hidden_state = dcgru_layer(output, hidden_state)
|
||||
hidden_states.append(hidden_state)
|
||||
output = hidden_state
|
||||
|
||||
return self.projection_layer(output), torch.cat(hidden_states,
|
||||
dim=1) # runs in O(num_layers) so not too slow #todo: check dim
|
||||
|
|
|
|||
Loading…
Reference in New Issue