Simplified encoder decoder model and moved curriculum learning outside

This commit is contained in:
Chintan Shah 2019-10-01 10:07:34 -04:00
parent a1c9af2bad
commit 69288460b1
1 changed files with 33 additions and 81 deletions

View File

@ -1,12 +1,10 @@
import numpy as np
import torch
import torch.nn as nn
from abc import ABC, abstractmethod
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class DCRNNModel(metaclass=ABC):
class DCRNNModel:
def __init__(self, is_training, scale_factor, adj_mx, **model_kwargs):
super().__init__()
self.adj_mx = adj_mx
@ -22,56 +20,6 @@ class DCRNNModel(metaclass=ABC):
self.input_dim = int(model_kwargs.get('input_dim', 1))
self.hidden_state_size = self.num_nodes * self.rnn_units
@abstractmethod
@property
def dcgru_layers(self):
pass
def _forward_cell(self, cell_input, prev_hidden_states):
"""
Runs for 1 time step through all layers.
:param cell_input: shape (batch_size, input feature size)
:param prev_hidden_states: (num_layers, batch_size, hidden size)
:return: output of cell: shape(batch_size, hidden size)
all hidden states from layer: shape(num_layers, batch_size, hidden size)
"""
hidden_states = []
output = cell_input
for layer_num, dcgru_layer in enumerate(self.dcgru_layers):
hidden_state = dcgru_layer(output, prev_hidden_states[layer_num])
hidden_states.append(hidden_state)
output = hidden_state
return output, torch.cat(hidden_states, dim=1) # runs in O(num_layers) so not too slow #todo: check dim
def _forward_impl(self, inputs, hidden_state):
"""
forward pass.
:param inputs: shape (batch_size, timesteps, input_size)
:param hidden_state: (num_layers, batch_size, self.hidden_state_size) -> optional, zeros if not provided
:return: output: # shape (timesteps, batch_size, self.hidden_state_size)
hidden_state # shape (num_layers, batch_size, self.hidden_state_size) (lower indices mean lower layers)
"""
batch_size, timesteps, _ = inputs.size()
if hidden_state is None:
hidden_state = torch.zeros((self.num_rnn_layers, batch_size, self.hidden_state_size),
device=device)
output = torch.empty((timesteps, batch_size, self.hidden_state_size))
for t in range(timesteps):
hidden_state = self.t_step_forward_pass(hidden_state, inputs, output, t)
output = output.permute(1, 0, 2)
return output, hidden_state
@abstractmethod
def t_step_forward_pass(self, hidden_state, inputs, output, t):
"""
Implements the forward pass for timestep t.
"""
# this is to accommodate curriculum learning
pass
class EncoderModel(nn.Module, DCRNNModel):
def __init__(self, is_training, scaler, adj_mx, **model_kwargs):
@ -79,14 +27,9 @@ class EncoderModel(nn.Module, DCRNNModel):
# https://pytorch.org/docs/stable/nn.html#gru
self.seq_len = int(model_kwargs.get('seq_len')) # for the encoder
def t_step_forward_pass(self, hidden_state, inputs, output, t):
cell_input = inputs[:, t, :] # (batch_size, input_size)
cell_output, hidden_state = self._forward_cell(cell_input, hidden_state)
output[t] = cell_output
return hidden_state
@property
def dcgru_layers(self):
# input shape is supposed to be Input (batch_size, timesteps, num_sensor*input_dim)
# input shape is supposed to be Input (batch_size, num_sensor*input_dim)
# first layer takes input shape and subsequent layer take input from the first layer
return [nn.GRUCell(input_size=self.num_nodes * self.input_dim,
hidden_size=self.hidden_state_size,
@ -99,12 +42,23 @@ class EncoderModel(nn.Module, DCRNNModel):
"""
Encoder forward pass.
:param inputs: shape (batch_size, timesteps, num_nodes * input_dim)
:param inputs: shape (batch_size, self.num_nodes * self.input_dim)
:param hidden_state: (num_layers, batch_size, self.hidden_state_size) -> optional, zeros if not provided
:return: output: # shape (timesteps, batch_size, self.hidden_state_size)
:return: output: # shape (batch_size, self.hidden_state_size)
hidden_state # shape (num_layers, batch_size, self.hidden_state_size) (lower indices mean lower layers)
"""
return self._forward_impl(inputs, hidden_state)
batch_size, _ = inputs.size()
if hidden_state is None:
hidden_state = torch.zeros((self.num_rnn_layers, batch_size, self.hidden_state_size),
device=device)
hidden_states = []
output = inputs
for layer_num, dcgru_layer in enumerate(self.dcgru_layers):
hidden_state = dcgru_layer(output, hidden_state)
hidden_states.append(hidden_state)
output = hidden_state
return output, torch.cat(hidden_states, dim=1) # runs in O(num_layers) so not too slow # todo: check dim
class DecoderModel(nn.Module, DCRNNModel):
@ -115,6 +69,7 @@ class DecoderModel(nn.Module, DCRNNModel):
self.horizon = int(model_kwargs.get('horizon', 1)) # for the decoder
self.projection_layer = nn.Linear(self.hidden_state_size, self.num_nodes * self.output_dim)
@property
def dcgru_layers(self):
return [nn.GRUCell(input_size=self.num_nodes * self.output_dim,
hidden_size=self.hidden_state_size,
@ -123,28 +78,25 @@ class DecoderModel(nn.Module, DCRNNModel):
bias=True) for _ in
range(self.num_rnn_layers - 1)]
def t_step_forward_pass(self, hidden_state, inputs, output, t):
cell_input = inputs[:, t, :] # (batch_size, input_size)
if self.is_training:
if t > 0 and self.use_curriculum_learning:
c = np.random.uniform(0, 1)
if c >= self._compute_sampling_threshold(): #todo
cell_input = output[
t - 1] # todo: this won't work because the linear layer is applied after forward_impl
cell_output, hidden_state = self._forward_cell(cell_input, hidden_state)
output[t] = cell_output
return hidden_state
def forward(self, inputs, hidden_state=None):
"""
Decoder forward pass.
:param inputs: shape (batch_size, timesteps, num_nodes * input_dim)
:param inputs: shape (batch_size, self.num_nodes * self.output_dim)
:param hidden_state: (num_layers, batch_size, self.hidden_state_size) -> optional, zeros if not provided
:return: output: # shape (timesteps, batch_size, self.num_nodes * self.output_dim)
:return: output: # shape (batch_size, self.num_nodes * self.output_dim)
hidden_state # shape (num_layers, batch_size, self.hidden_state_size) (lower indices mean lower layers)
"""
output, hidden = self._forward_impl(inputs, hidden_state)
return self.projection_layer(output), hidden_state
batch_size, _ = inputs.size()
if hidden_state is None:
hidden_state = torch.zeros((self.num_rnn_layers, batch_size, self.hidden_state_size),
device=device)
hidden_states = []
output = inputs
for layer_num, dcgru_layer in enumerate(self.dcgru_layers):
hidden_state = dcgru_layer(output, hidden_state)
hidden_states.append(hidden_state)
output = hidden_state
return self.projection_layer(output), torch.cat(hidden_states,
dim=1) # runs in O(num_layers) so not too slow #todo: check dim