Update pretrained model.

This commit is contained in:
Yaguang 2018-10-01 09:47:23 -07:00
parent e0212cc178
commit 9520e6cf85
5 changed files with 51 additions and 13 deletions

View File

@ -14,7 +14,6 @@ model:
input_dim: 2
l1_decay: 0
max_diffusion_step: 2
max_grad_norm: 5
num_nodes: 207
num_rnn_layers: 2
output_dim: 1
@ -27,10 +26,13 @@ train:
dropout: 0
epoch: 0
epochs: 100
epsilon: 1.0e-3
global_step: 0
lr_decay_ratio: 0.1
steps: [20, 30, 40, 50]
max_grad_norm: 5
max_to_keep: 100
min_learning_rate: 2.0e-06
optimizer: adam
patience: 50
steps: [20, 30, 40, 50]
test_every_n_epochs: 10

View File

@ -0,0 +1,40 @@
base_dir: data/model
data:
batch_size: 64
dataset_dir: data/METR-LA
graph_pkl_filename: data/sensor_graph/adj_mx.pkl
test_batch_size: 64
model:
cl_decay_steps: 2000
filter_type: dual_random_walk
horizon: 12
input_dim: 2
l1_decay: 0
max_diffusion_step: 2
num_nodes: 207
num_rnn_layers: 2
output_dim: 1
rnn_units: 64
seq_len: 12
use_curriculum_learning: true
train:
base_lr: 0.01
dropout: 0
epoch: 64
epochs: 100
epsilon: 0.001
global_step: 24375
log_dir: data/model/pretrained/
lr_decay_ratio: 0.1
max_grad_norm: 5
max_to_keep: 100
min_learning_rate: 2.0e-06
model_filename: data/model/pretrained/models-2.7422-24375
optimizer: adam
patience: 50
steps:
- 20
- 30
- 40
- 50
test_every_n_epochs: 10

Binary file not shown.

View File

@ -1,6 +1,6 @@
import argparse
import numpy as np
import os
import pandas as pd
import sys
import tensorflow as tf
import yaml
@ -21,21 +21,17 @@ def run_dcrnn(args):
with tf.Session(config=tf_config) as sess:
supervisor = DCRNNSupervisor(adj_mx=adj_mx, **config)
supervisor.restore(sess, config=config)
df_preds = supervisor.test_and_write_result(sess, config['global_step'])
# TODO (yaguang): save this file to the npz file.
for horizon_i in df_preds:
df_pred = df_preds[horizon_i]
filename = os.path.join('data/results/', 'dcrnn_prediction_%d.h5' % (horizon_i + 1))
df_pred.to_hdf(filename, 'results')
print('Predictions saved as data/results/dcrnn_seq2seq_prediction_[1-12].h5...')
outputs = supervisor.test_and_write_result(sess, config['train']['global_step'])
np.savez_compressed(args.output_filename, **outputs)
print('Predictions saved as {}.'.format(args.output_filename))
if __name__ == '__main__':
sys.path.append(os.getcwd())
parser = argparse.ArgumentParser()
parser.add_argument('--traffic_df_filename', default='data/df_highway_2012_4mon_sample.h5',
type=str, help='Traffic data file.')
parser.add_argument('--use_cpu_only', default=False, type=str, help='Whether to run tensorflow on cpu.')
parser.add_argument('--config_filename', default=None, type=str, help='Config file for pretrained model.')
parser.add_argument('--config_filename', default='data/model/pretrained/config.yaml', type=str,
help='Config file for pretrained model.')
parser.add_argument('--output_filename', default='data/dcrnn_predictions.npz')
args = parser.parse_args()
run_dcrnn(args)