squash! Added dcrnn_cell

This commit is contained in:
Chintan Shah 2019-10-06 17:01:49 -04:00
commit 9fb999c3bb
3 changed files with 62 additions and 55 deletions

View File

@ -1,7 +1,10 @@
import numpy as np
import torch import torch
from lib import utils from lib import utils
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class LayerParams: class LayerParams:
def __init__(self, rnn_network: torch.nn.Module, layer_type: str): def __init__(self, rnn_network: torch.nn.Module, layer_type: str):
@ -12,7 +15,8 @@ class LayerParams:
def get_weights(self, shape): def get_weights(self, shape):
if shape not in self._params_dict: if shape not in self._params_dict:
nn_param = torch.nn.init.xavier_normal(torch.empty(*shape)) nn_param = torch.nn.Parameter(torch.empty(*shape, device=device))
torch.nn.init.xavier_normal_(nn_param)
self._params_dict[shape] = nn_param self._params_dict[shape] = nn_param
self._rnn_network.register_parameter('{}_weight_{}'.format(self._type, str(shape)), self._rnn_network.register_parameter('{}_weight_{}'.format(self._type, str(shape)),
nn_param) nn_param)
@ -20,7 +24,8 @@ class LayerParams:
def get_biases(self, length, bias_start=0.0): def get_biases(self, length, bias_start=0.0):
if length not in self._biases_dict: if length not in self._biases_dict:
biases = torch.nn.init.constant(torch.empty(length), bias_start) biases = torch.nn.Parameter(torch.empty(length, device=device))
torch.nn.init.constant_(biases, bias_start)
self._biases_dict[length] = biases self._biases_dict[length] = biases
self._rnn_network.register_parameter('{}_biases_{}'.format(self._type, str(length)), self._rnn_network.register_parameter('{}_biases_{}'.format(self._type, str(length)),
biases) biases)
@ -65,16 +70,14 @@ class DCGRUCell(torch.nn.Module):
self._fc_params = LayerParams(self, 'fc') self._fc_params = LayerParams(self, 'fc')
self._gconv_params = LayerParams(self, 'gconv') self._gconv_params = LayerParams(self, 'gconv')
@property @staticmethod
def state_size(self): def _build_sparse_matrix(L):
return self._num_nodes * self._num_units L = L.tocoo()
indices = np.column_stack((L.row, L.col))
@property # this is to ensure row-major ordering to equal torch.sparse.sparse_reorder(L)
def output_size(self): indices = indices[np.lexsort((indices[:, 0], indices[:, 1]))]
output_size = self._num_nodes * self._num_units L = torch.sparse_coo_tensor(indices.T, L.data, L.shape, device=device)
if self._num_proj is not None: return L
output_size = self._num_nodes * self._num_proj
return output_size
def forward(self, inputs, hx): def forward(self, inputs, hx):
"""Gated recurrent unit (GRU) with Graph Convolution. """Gated recurrent unit (GRU) with Graph Convolution.
@ -86,14 +89,13 @@ class DCGRUCell(torch.nn.Module):
the arity and shapes of `state` the arity and shapes of `state`
""" """
output_size = 2 * self._num_units output_size = 2 * self._num_units
# We start with bias of 1.0 to not reset and not update.
if self._use_gc_for_ru: if self._use_gc_for_ru:
fn = self._gconv fn = self._gconv
else: else:
fn = self._fc fn = self._fc
value = torch.sigmoid(fn(inputs, hx, output_size, bias_start=1.0)) value = torch.sigmoid(fn(inputs, hx, output_size, bias_start=1.0))
value = torch.reshape(value, (-1, self._num_nodes, output_size)) value = torch.reshape(value, (-1, self._num_nodes, output_size))
r, u = torch.split(tensor=value, split_size_or_sections=2, dim=-1) r, u = torch.split(tensor=value, split_size_or_sections=self._num_units, dim=-1)
r = torch.reshape(r, (-1, self._num_nodes * self._num_units)) r = torch.reshape(r, (-1, self._num_nodes * self._num_units))
u = torch.reshape(u, (-1, self._num_nodes * self._num_units)) u = torch.reshape(u, (-1, self._num_nodes * self._num_units))
@ -135,8 +137,7 @@ class DCGRUCell(torch.nn.Module):
inputs = torch.reshape(inputs, (batch_size, self._num_nodes, -1)) inputs = torch.reshape(inputs, (batch_size, self._num_nodes, -1))
state = torch.reshape(state, (batch_size, self._num_nodes, -1)) state = torch.reshape(state, (batch_size, self._num_nodes, -1))
inputs_and_state = torch.cat([inputs, state], dim=2) inputs_and_state = torch.cat([inputs, state], dim=2)
input_size = inputs_and_state.shape[2].value input_size = inputs_and_state.size(2)
dtype = inputs.dtype
x = inputs_and_state x = inputs_and_state
x0 = x.permute(1, 2, 0) # (num_nodes, total_arg_size, batch_size) x0 = x.permute(1, 2, 0) # (num_nodes, total_arg_size, batch_size)
@ -147,12 +148,11 @@ class DCGRUCell(torch.nn.Module):
pass pass
else: else:
for support in self._supports: for support in self._supports:
# https://discuss.pytorch.org/t/sparse-x-dense-dense-matrix-multiplication/6116/7 x1 = torch.sparse.mm(support, x0)
x1 = torch.mm(support, x0)
x = self._concat(x, x1) x = self._concat(x, x1)
for k in range(2, self._max_diffusion_step + 1): for k in range(2, self._max_diffusion_step + 1):
x2 = 2 * torch.mm(support, x1) - x0 x2 = 2 * torch.sparse.mm(support, x1) - x0
x = self._concat(x, x2) x = self._concat(x, x2)
x1, x0 = x2, x1 x1, x0 = x2, x1

View File

@ -2,6 +2,10 @@ import numpy as np
import torch import torch
import torch.nn as nn import torch.nn as nn
from model.pytorch.dcrnn_cell import DCGRUCell
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class Seq2SeqAttrs: class Seq2SeqAttrs:
def __init__(self, adj_mx, **model_kwargs): def __init__(self, adj_mx, **model_kwargs):
@ -9,7 +13,6 @@ class Seq2SeqAttrs:
self.max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2)) self.max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2))
self.cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000)) self.cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000))
self.filter_type = model_kwargs.get('filter_type', 'laplacian') self.filter_type = model_kwargs.get('filter_type', 'laplacian')
# self.max_grad_norm = float(model_kwargs.get('max_grad_norm', 5.0))
self.num_nodes = int(model_kwargs.get('num_nodes', 1)) self.num_nodes = int(model_kwargs.get('num_nodes', 1))
self.num_rnn_layers = int(model_kwargs.get('num_rnn_layers', 1)) self.num_rnn_layers = int(model_kwargs.get('num_rnn_layers', 1))
self.rnn_units = int(model_kwargs.get('rnn_units')) self.rnn_units = int(model_kwargs.get('rnn_units'))
@ -18,19 +21,13 @@ class Seq2SeqAttrs:
class EncoderModel(nn.Module, Seq2SeqAttrs): class EncoderModel(nn.Module, Seq2SeqAttrs):
def __init__(self, adj_mx, **model_kwargs): def __init__(self, adj_mx, **model_kwargs):
# super().__init__(is_training, adj_mx, **model_kwargs)
# https://pytorch.org/docs/stable/nn.html#gru
nn.Module.__init__(self) nn.Module.__init__(self)
Seq2SeqAttrs.__init__(self, adj_mx, **model_kwargs) Seq2SeqAttrs.__init__(self, adj_mx, **model_kwargs)
self.input_dim = int(model_kwargs.get('input_dim', 1)) self.input_dim = int(model_kwargs.get('input_dim', 1))
self.seq_len = int(model_kwargs.get('seq_len')) # for the encoder self.seq_len = int(model_kwargs.get('seq_len')) # for the encoder
self.dcgru_layers = nn.ModuleList([nn.GRUCell(input_size=self.num_nodes * self.input_dim, self.dcgru_layers = nn.ModuleList(
hidden_size=self.hidden_state_size, [DCGRUCell(self.rnn_units, adj_mx, self.max_diffusion_step, self.num_nodes,
bias=True)] + [ filter_type=self.filter_type) for _ in range(self.num_rnn_layers)])
nn.GRUCell(input_size=self.hidden_state_size,
hidden_size=self.hidden_state_size,
bias=True) for _ in
range(self.num_rnn_layers - 1)])
def forward(self, inputs, hidden_state=None): def forward(self, inputs, hidden_state=None):
""" """
@ -45,7 +42,8 @@ class EncoderModel(nn.Module, Seq2SeqAttrs):
""" """
batch_size, _ = inputs.size() batch_size, _ = inputs.size()
if hidden_state is None: if hidden_state is None:
hidden_state = torch.zeros((self.num_rnn_layers, batch_size, self.hidden_state_size)) hidden_state = torch.zeros((self.num_rnn_layers, batch_size, self.hidden_state_size),
device=device)
hidden_states = [] hidden_states = []
output = inputs output = inputs
for layer_num, dcgru_layer in enumerate(self.dcgru_layers): for layer_num, dcgru_layer in enumerate(self.dcgru_layers):
@ -63,14 +61,10 @@ class DecoderModel(nn.Module, Seq2SeqAttrs):
Seq2SeqAttrs.__init__(self, adj_mx, **model_kwargs) Seq2SeqAttrs.__init__(self, adj_mx, **model_kwargs)
self.output_dim = int(model_kwargs.get('output_dim', 1)) self.output_dim = int(model_kwargs.get('output_dim', 1))
self.horizon = int(model_kwargs.get('horizon', 1)) # for the decoder self.horizon = int(model_kwargs.get('horizon', 1)) # for the decoder
self.projection_layer = nn.Linear(self.hidden_state_size, self.num_nodes * self.output_dim) self.projection_layer = nn.Linear(self.rnn_units, self.output_dim)
self.dcgru_layers = nn.ModuleList([nn.GRUCell(input_size=self.num_nodes * self.output_dim, self.dcgru_layers = nn.ModuleList(
hidden_size=self.hidden_state_size, [DCGRUCell(self.rnn_units, adj_mx, self.max_diffusion_step, self.num_nodes,
bias=True)] + [ filter_type=self.filter_type) for _ in range(self.num_rnn_layers)])
nn.GRUCell(input_size=self.hidden_state_size,
hidden_size=self.hidden_state_size,
bias=True) for _ in
range(self.num_rnn_layers - 1)])
def forward(self, inputs, hidden_state=None): def forward(self, inputs, hidden_state=None):
""" """
@ -90,7 +84,10 @@ class DecoderModel(nn.Module, Seq2SeqAttrs):
hidden_states.append(next_hidden_state) hidden_states.append(next_hidden_state)
output = next_hidden_state output = next_hidden_state
return self.projection_layer(output), torch.stack(hidden_states) projected = self.projection_layer(output.view(-1, self.rnn_units))
output = projected.view(-1, self.num_nodes * self.output_dim)
return output, torch.stack(hidden_states)
class DCRNNModel(nn.Module, Seq2SeqAttrs): class DCRNNModel(nn.Module, Seq2SeqAttrs):
@ -128,7 +125,8 @@ class DCRNNModel(nn.Module, Seq2SeqAttrs):
:return: output: (self.horizon, batch_size, self.num_nodes * self.output_dim) :return: output: (self.horizon, batch_size, self.num_nodes * self.output_dim)
""" """
batch_size = encoder_hidden_state.size(1) batch_size = encoder_hidden_state.size(1)
go_symbol = torch.zeros((batch_size, self.num_nodes * self.decoder_model.output_dim)) go_symbol = torch.zeros((batch_size, self.num_nodes * self.decoder_model.output_dim),
device=device)
decoder_hidden_state = encoder_hidden_state decoder_hidden_state = encoder_hidden_state
decoder_input = go_symbol decoder_input = go_symbol
@ -155,7 +153,7 @@ class DCRNNModel(nn.Module, Seq2SeqAttrs):
:return: output: (self.horizon, batch_size, self.num_nodes * self.output_dim) :return: output: (self.horizon, batch_size, self.num_nodes * self.output_dim)
""" """
encoder_hidden_state = self.encoder(inputs) encoder_hidden_state = self.encoder(inputs)
self._logger.info("Encoder complete, starting decoder") self._logger.debug("Encoder complete, starting decoder")
outputs = self.decoder(encoder_hidden_state, labels, batches_seen=batches_seen) outputs = self.decoder(encoder_hidden_state, labels, batches_seen=batches_seen)
self._logger.info("Decoder complete") self._logger.debug("Decoder complete")
return outputs return outputs

View File

@ -7,6 +7,8 @@ import torch
from lib import utils from lib import utils
from model.pytorch.dcrnn_model import DCRNNModel from model.pytorch.dcrnn_model import DCRNNModel
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class DCRNNSupervisor: class DCRNNSupervisor:
def __init__(self, adj_mx, **kwargs): def __init__(self, adj_mx, **kwargs):
@ -75,7 +77,7 @@ class DCRNNSupervisor:
config['model_state_dict'] = self.dcrnn_model.state_dict() config['model_state_dict'] = self.dcrnn_model.state_dict()
config['epoch'] = epoch config['epoch'] = epoch
torch.save(config, self._log_dir + 'models/epo%d.tar' % epoch) torch.save(config, self._log_dir + 'models/epo%d.tar' % epoch)
self._logger.info("Loaded model at {}".format(epoch)) self._logger.info("Saved model at {}".format(epoch))
return self._log_dir + 'models/epo%d.tar' % epoch return self._log_dir + 'models/epo%d.tar' % epoch
def load_model(self, epoch): def load_model(self, epoch):
@ -102,8 +104,7 @@ class DCRNNSupervisor:
criterion = torch.nn.L1Loss() criterion = torch.nn.L1Loss()
for _, (x, y) in enumerate(val_iterator): for _, (x, y) in enumerate(val_iterator):
x, y = self._get_x_y(x, y) x, y = self._prepare_data(x, y)
x, y = self._get_x_y_in_correct_dims(x, y)
output = self.dcrnn_model(x) output = self.dcrnn_model(x)
loss = self._compute_loss(y, output, criterion) loss = self._compute_loss(y, output, criterion)
@ -128,6 +129,7 @@ class DCRNNSupervisor:
self.dcrnn_model = self.dcrnn_model.train() self.dcrnn_model = self.dcrnn_model.train()
self._logger.info('Start training ...') self._logger.info('Start training ...')
self._logger.info("num_batches:{}".format(self._data['train_loader'].num_batch))
for epoch_num in range(epochs): for epoch_num in range(epochs):
train_iterator = self._data['train_loader'].get_iterator() train_iterator = self._data['train_loader'].get_iterator()
losses = [] losses = []
@ -137,12 +139,13 @@ class DCRNNSupervisor:
for _, (x, y) in enumerate(train_iterator): for _, (x, y) in enumerate(train_iterator):
optimizer.zero_grad() optimizer.zero_grad()
x, y = self._get_x_y(x, y) x, y = self._prepare_data(x, y)
x, y = self._get_x_y_in_correct_dims(x, y)
output = self.dcrnn_model(x, y, batches_seen) output = self.dcrnn_model(x, y, batches_seen)
loss = self._compute_loss(y, output, criterion) loss = self._compute_loss(y, output, criterion)
self._logger.info(loss.item())
self._logger.debug(loss.item())
losses.append(loss.item()) losses.append(loss.item())
batches_seen += 1 batches_seen += 1
@ -152,40 +155,46 @@ class DCRNNSupervisor:
torch.nn.utils.clip_grad_norm_(self.dcrnn_model.parameters(), self.max_grad_norm) torch.nn.utils.clip_grad_norm_(self.dcrnn_model.parameters(), self.max_grad_norm)
optimizer.step() optimizer.step()
self._logger.info("epoch complete")
lr_scheduler.step() lr_scheduler.step()
self._logger.info("evaluating now!")
val_loss = self.evaluate(dataset='val') val_loss = self.evaluate(dataset='val')
end_time = time.time() end_time = time.time()
if epoch_num % log_every == 0: if epoch_num % log_every == 0:
message = 'Epoch [{}/{}] ({}) train_mae: {:.4f}, val_mae: {:.4f}, lr: {:.6f}' \ message = 'Epoch [{}/{}] ({}) train_mae: {:.4f}, val_mae: {:.4f}, lr: {:.6f}, ' \
'{:.1f}s'.format(epoch_num, epochs, batches_seen, '{:.1f}s'.format(epoch_num, epochs, batches_seen,
np.mean(losses), val_loss, lr_scheduler.get_lr(), np.mean(losses), val_loss, lr_scheduler.get_lr()[0],
(end_time - start_time)) (end_time - start_time))
self._logger.info(message) self._logger.info(message)
if epoch_num % test_every_n_epochs == 0: if epoch_num % test_every_n_epochs == 0:
test_loss = self.evaluate(dataset='test') test_loss = self.evaluate(dataset='test')
message = 'Epoch [{}/{}] ({}) train_mae: {:.4f}, test_mae: {:.4f}, lr: {:.6f} ' \ message = 'Epoch [{}/{}] ({}) train_mae: {:.4f}, test_mae: {:.4f}, lr: {:.6f}, ' \
'{:.1f}s'.format(epoch_num, epochs, batches_seen, '{:.1f}s'.format(epoch_num, epochs, batches_seen,
np.mean(losses), test_loss, lr_scheduler.get_lr(), np.mean(losses), test_loss, lr_scheduler.get_lr()[0],
(end_time - start_time)) (end_time - start_time))
self._logger.info(message) self._logger.info(message)
if val_loss < min_val_loss: if val_loss < min_val_loss:
wait = 0 wait = 0
min_val_loss = val_loss
if save_model: if save_model:
model_file_name = self.save_model(epoch_num) model_file_name = self.save_model(epoch_num)
self._logger.info( self._logger.info(
'Val loss decrease from {:.4f} to {:.4f}, ' 'Val loss decrease from {:.4f} to {:.4f}, '
'saving to {}'.format(min_val_loss, val_loss, model_file_name)) 'saving to {}'.format(min_val_loss, val_loss, model_file_name))
min_val_loss = val_loss
elif val_loss >= min_val_loss: elif val_loss >= min_val_loss:
wait += 1 wait += 1
if wait == patience: if wait == patience:
self._logger.warning('Early stopping at epoch: %d' % epoch_num) self._logger.warning('Early stopping at epoch: %d' % epoch_num)
break break
def _prepare_data(self, x, y):
x, y = self._get_x_y(x, y)
x, y = self._get_x_y_in_correct_dims(x, y)
return x.to(device), y.to(device)
def _get_x_y(self, x, y): def _get_x_y(self, x, y):
""" """
:param x: shape (batch_size, seq_len, num_sensor, input_dim) :param x: shape (batch_size, seq_len, num_sensor, input_dim)