Implemented DCGRUCell in pytorch (untested)
This commit is contained in:
parent
00c70b3a27
commit
adbfa19146
|
|
@ -6,24 +6,27 @@ from torch import Tensor
|
|||
from lib import utils
|
||||
|
||||
|
||||
class FCLayerParams:
|
||||
def __init__(self, rnn_network: torch.nn.RNN):
|
||||
class LayerParams:
|
||||
def __init__(self, rnn_network: torch.nn.RNN, type: str):
|
||||
self._rnn_network = rnn_network
|
||||
self._params_dict = {}
|
||||
self._biases_dict = {}
|
||||
self._type = type
|
||||
|
||||
def get_weights(self, shape):
|
||||
if shape not in self._params_dict:
|
||||
nn_param = torch.nn.init.xavier_normal(torch.empty(*shape))
|
||||
self._params_dict[shape] = nn_param
|
||||
self._rnn_network.register_parameter('fc_weight_{}'.format(str(shape)), nn_param)
|
||||
self._rnn_network.register_parameter('{}_weight_{}'.format(self._type, str(shape)),
|
||||
nn_param)
|
||||
return self._params_dict[shape]
|
||||
|
||||
def get_biases(self, length, bias_start=0.0):
|
||||
if length not in self._biases_dict:
|
||||
biases = torch.nn.init.constant(torch.empty(length), bias_start)
|
||||
self._biases_dict[length] = biases
|
||||
self._rnn_network.register_parameter('fc_biases_{}'.format(str(length)), biases)
|
||||
self._rnn_network.register_parameter('{}_biases_{}'.format(self._type, str(length)),
|
||||
biases)
|
||||
|
||||
return self._biases_dict[length]
|
||||
|
||||
|
|
@ -72,7 +75,8 @@ class DCGRUCell(torch.nn.RNN):
|
|||
self._supports.append(self._build_sparse_matrix(support))
|
||||
|
||||
self._proj_weights = torch.nn.Parameter(torch.randn(self._num_units, self._num_proj))
|
||||
self._fc_params = FCLayerParams(self)
|
||||
self._fc_params = LayerParams(self, 'fc')
|
||||
self._gconv_params = LayerParams(self, 'gconv')
|
||||
|
||||
@property
|
||||
def state_size(self):
|
||||
|
|
@ -133,4 +137,52 @@ class DCGRUCell(torch.nn.RNN):
|
|||
value = torch.sigmoid(torch.matmul(inputs_and_state, weights))
|
||||
biases = self._fc_params.get_biases(output_size, bias_start)
|
||||
value += biases
|
||||
return value
|
||||
return value
|
||||
|
||||
def _gconv(self, inputs, state, output_size, bias_start=0.0):
|
||||
"""Graph convolution between input and the graph matrix.
|
||||
|
||||
:param args: a 2D Tensor or a list of 2D, batch x n, Tensors.
|
||||
:param output_size:
|
||||
:param bias:
|
||||
:param bias_start:
|
||||
:return:
|
||||
"""
|
||||
# Reshape input and state to (batch_size, num_nodes, input_dim/state_dim)
|
||||
batch_size = inputs.shape[0]
|
||||
inputs = torch.reshape(inputs, (batch_size, self._num_nodes, -1))
|
||||
state = torch.reshape(state, (batch_size, self._num_nodes, -1))
|
||||
inputs_and_state = torch.cat([inputs, state], dim=2)
|
||||
input_size = inputs_and_state.shape[2].value
|
||||
dtype = inputs.dtype
|
||||
|
||||
x = inputs_and_state
|
||||
x0 = x.permute(1, 2, 0) # (num_nodes, total_arg_size, batch_size)
|
||||
x0 = torch.reshape(x0, shape=[self._num_nodes, input_size * batch_size])
|
||||
x = torch.unsqueeze(x0, 0)
|
||||
|
||||
if self._max_diffusion_step == 0:
|
||||
pass
|
||||
else:
|
||||
for support in self._supports:
|
||||
# https://discuss.pytorch.org/t/sparse-x-dense-dense-matrix-multiplication/6116/7
|
||||
x1 = torch.mm(support, x0)
|
||||
x = self._concat(x, x1)
|
||||
|
||||
for k in range(2, self._max_diffusion_step + 1):
|
||||
x2 = 2 * torch.mm(support, x1) - x0
|
||||
x = self._concat(x, x2)
|
||||
x1, x0 = x2, x1
|
||||
|
||||
num_matrices = len(self._supports) * self._max_diffusion_step + 1 # Adds for x itself.
|
||||
x = torch.reshape(x, shape=[num_matrices, self._num_nodes, input_size, batch_size])
|
||||
x = x.permute(3, 1, 2, 0) # (batch_size, num_nodes, input_size, order)
|
||||
x = torch.reshape(x, shape=[batch_size * self._num_nodes, input_size * num_matrices])
|
||||
|
||||
weights = self._gconv_params.get_weights((input_size * num_matrices, output_size))
|
||||
x = torch.matmul(x, weights) # (batch_size * self._num_nodes, output_size)
|
||||
|
||||
biases = self._gconv_params.get_biases(output_size, bias_start)
|
||||
x += biases
|
||||
# Reshape res back to 2D: (batch_size, num_node, state_dim) -> (batch_size, num_node * state_dim)
|
||||
return torch.reshape(x, [batch_size, self._num_nodes * output_size])
|
||||
|
|
|
|||
Loading…
Reference in New Issue