From b65df994e4370e261f5f7f52f73c6675b416f58b Mon Sep 17 00:00:00 2001 From: Chintan Shah Date: Sun, 6 Oct 2019 11:55:02 -0400 Subject: [PATCH] Added dcrnn_cell --- model/pytorch/dcrnn_cell.py | 42 +++++++++++-------------------------- 1 file changed, 12 insertions(+), 30 deletions(-) diff --git a/model/pytorch/dcrnn_cell.py b/model/pytorch/dcrnn_cell.py index d8f045c..5863c99 100644 --- a/model/pytorch/dcrnn_cell.py +++ b/model/pytorch/dcrnn_cell.py @@ -1,17 +1,14 @@ -from typing import Optional - import torch -from torch import Tensor from lib import utils class LayerParams: - def __init__(self, rnn_network: torch.nn.RNN, type: str): + def __init__(self, rnn_network: torch.nn.Module, layer_type: str): self._rnn_network = rnn_network self._params_dict = {} self._biases_dict = {} - self._type = type + self._type = layer_type def get_weights(self, shape): if shape not in self._params_dict: @@ -31,32 +28,24 @@ class LayerParams: return self._biases_dict[length] -class DCGRUCell(torch.nn.RNN): - def __init__(self, num_units, adj_mx, max_diffusion_step, num_nodes, input_size: int, - hidden_size: int, - num_layers: int = 1, - num_proj=None, - nonlinearity='tanh', filter_type="laplacian", use_gc_for_ru=True): +class DCGRUCell(torch.nn.Module): + def __init__(self, num_units, adj_mx, max_diffusion_step, num_nodes, nonlinearity='tanh', + filter_type="laplacian", use_gc_for_ru=True): """ :param num_units: :param adj_mx: :param max_diffusion_step: :param num_nodes: - :param input_size: - :param num_proj: :param nonlinearity: :param filter_type: "laplacian", "random_walk", "dual_random_walk". :param use_gc_for_ru: whether to use Graph convolution to calculate the reset and update gates. """ - super(DCGRUCell, self).__init__(input_size, hidden_size, bias=True, - # bias param does not exist in tf code? - num_layers=num_layers, - nonlinearity=nonlinearity) + + super().__init__() self._activation = torch.tanh if nonlinearity == 'tanh' else torch.relu # support other nonlinearities up here? self._num_nodes = num_nodes - self._num_proj = num_proj self._num_units = num_units self._max_diffusion_step = max_diffusion_step self._supports = [] @@ -73,8 +62,6 @@ class DCGRUCell(torch.nn.RNN): supports.append(utils.calculate_scaled_laplacian(adj_mx)) for support in supports: self._supports.append(self._build_sparse_matrix(support)) - - self._proj_weights = torch.nn.Parameter(torch.randn(self._num_units, self._num_proj)) self._fc_params = LayerParams(self, 'fc') self._gconv_params = LayerParams(self, 'gconv') @@ -89,7 +76,7 @@ class DCGRUCell(torch.nn.RNN): output_size = self._num_nodes * self._num_proj return output_size - def forward(self, input: Tensor, hx: Optional[Tensor] = ...): + def forward(self, inputs, hx): """Gated recurrent unit (GRU) with Graph Convolution. :param input: (B, num_nodes * input_dim) @@ -104,23 +91,18 @@ class DCGRUCell(torch.nn.RNN): fn = self._gconv else: fn = self._fc - value = torch.sigmoid(fn(input, hx, output_size, bias_start=1.0)) + value = torch.sigmoid(fn(inputs, hx, output_size, bias_start=1.0)) value = torch.reshape(value, (-1, self._num_nodes, output_size)) r, u = torch.split(tensor=value, split_size_or_sections=2, dim=-1) r = torch.reshape(r, (-1, self._num_nodes * self._num_units)) u = torch.reshape(u, (-1, self._num_nodes * self._num_units)) - c = self._gconv(input, r * hx, self._num_units) + c = self._gconv(inputs, r * hx, self._num_units) if self._activation is not None: c = self._activation(c) - output = new_state = u * hx + (1 - u) * c - if self._num_proj is not None: - batch_size = input.shape[0] - output = torch.reshape(new_state, shape=(-1, self._num_units)) - output = torch.reshape(torch.matmul(output, self._proj_weights), - shape=(batch_size, self.output_size)) - return output, new_state + new_state = u * hx + (1.0 - u) * c + return new_state @staticmethod def _concat(x, x_):