From bdce241a8f4b1e6478a8080f21021bb116d856a7 Mon Sep 17 00:00:00 2001 From: Chintan Shah Date: Mon, 30 Sep 2019 20:32:31 -0400 Subject: [PATCH] Implemented abstract method and changed scheme to do all layers first for each timestep --- model/pytorch/dcrnn_model.py | 57 +++++++++++++++++++++++------------- 1 file changed, 37 insertions(+), 20 deletions(-) diff --git a/model/pytorch/dcrnn_model.py b/model/pytorch/dcrnn_model.py index 10e5783..6b8b489 100644 --- a/model/pytorch/dcrnn_model.py +++ b/model/pytorch/dcrnn_model.py @@ -22,43 +22,54 @@ class DCRNNModel(metaclass=ABC): self.hidden_state_size = self.num_nodes * self.rnn_units @abstractmethod + @property def dcgru_layers(self): pass - @staticmethod - def _forward_layer(inputs, dcgru_layer, hidden_state): - # inputs shape = (timesteps, batch_size, input_size) - outputs = [] - for cell_input in inputs[:, ]: - hidden_state = dcgru_layer(cell_input, hidden_state) - outputs.append(hidden_state) + def _forward_cell(self, cell_input, prev_hidden_states): + """ + Runs for 1 time step through all layers. + :param cell_input: shape (batch_size, input feature size) + :param prev_hidden_states: (num_layers, batch_size, hidden size) + :return: output of cell: shape(batch_size, hidden size) + all hidden states from layer: shape(num_layers, batch_size, hidden size) + """ + hidden_states = [] + output = cell_input + for layer_num, dcgru_layer in enumerate(self.dcgru_layers): + hidden_state = dcgru_layer(output, prev_hidden_states[layer_num]) + hidden_states.append(hidden_state) + output = hidden_state - return torch.cat(outputs, dim=1) # runs in O(timesteps) not too slow + return output, torch.cat(hidden_states, dim=1) # runs in O(num_layers) so not too slow #todo: check dim def _forward_impl(self, inputs, hidden_state): """ forward pass. - :param inputs: shape (batch_size, timesteps, num_nodes * input_dim) + :param inputs: shape (batch_size, timesteps, input_size) :param hidden_state: (num_layers, batch_size, self.hidden_state_size) -> optional, zeros if not provided :return: output: # shape (timesteps, batch_size, self.hidden_state_size) hidden_state # shape (num_layers, batch_size, self.hidden_state_size) (lower indices mean lower layers) """ - layer_input = inputs.permute(1, 0, 2) # first axis is now timesteps + batch_size, timesteps, _ = inputs.size() if hidden_state is None: - batch_size = inputs.size()[0] hidden_state = torch.zeros((self.num_rnn_layers, batch_size, self.hidden_state_size), device=device) - hidden = torch.empty_like(hidden_state) - # noinspection PyTypeChecker - for layer_num, dcgru_layer in enumerate(self.dcgru_layers): - layer_states = self._forward_layer(layer_input, dcgru_layer, hidden_state[layer_num]) - # append last time step's hidden state - hidden[layer_num] = layer_states[-1] - layer_input = layer_states + output = torch.empty((timesteps, batch_size, self.hidden_state_size)) + for t in range(timesteps): + hidden_state = self.t_step_forward_pass(hidden_state, inputs, output, t) - output = layer_input # last layer's output - return output, hidden + output = output.permute(1, 0, 2) + return output, hidden_state + + @abstractmethod + def t_step_forward_pass(self, hidden_state, inputs, output, t): + """ + Implements the forward pass for timestep t. + """ + # this is to accommodate curriculum learning + pass class EncoderModel(nn.Module, DCRNNModel): @@ -67,6 +78,12 @@ class EncoderModel(nn.Module, DCRNNModel): # https://pytorch.org/docs/stable/nn.html#gru self.seq_len = int(model_kwargs.get('seq_len')) # for the encoder + def t_step_forward_pass(self, hidden_state, inputs, output, t): + cell_input = inputs[:, t, :] # (batch_size, input_size) + cell_output, hidden_state = self._forward_cell(cell_input, hidden_state) + output[t] = cell_output + return hidden_state + def dcgru_layers(self): # input shape is supposed to be Input (batch_size, timesteps, num_sensor*input_dim) # first layer takes input shape and subsequent layer take input from the first layer