Add PEMS-BAY configuration.
This commit is contained in:
parent
1481b24b1b
commit
c8a676604b
28
README.md
28
README.md
|
|
@ -20,28 +20,38 @@ pip install -r requirements.txt
|
|||
```
|
||||
|
||||
## Data Preparation
|
||||
The traffic data file for Los Angeles, i.e., `df_highway_2012_4mon_sample.h5`, is available at [Google Drive](https://drive.google.com/open?id=1tjf5aXCgUoimvADyxKqb-YUlxP8O46pb) or [Baidu Yun](https://pan.baidu.com/s/1rsCq38a9SRyFO1F68tUscA), and should be
|
||||
put into the `data/METR-LA` folder.
|
||||
Besides, the locations of sensors are available at [data/sensor_graph/graph_sensor_locations.csv](https://github.com/liyaguang/DCRNN/blob/master/data/sensor_graph/graph_sensor_locations.csv).
|
||||
The traffic data files for Los Angeles and the Bay Area, i.e., `metr-la.h5` and `pems-bay.h5`, are available at [Google Drive](https://drive.google.com/open?id=10FOTa6HXPqX8Pf5WRoRwcFnW9BrNZEIX) or [Baidu Yun](hbttps://pan.baidu.com/s/14Yy9isAIZYdU__OYEQGa_g), and should be
|
||||
put into the `data/` folder.
|
||||
Besides, the locations of sensors Los Angeles are available at [data/sensor_graph/graph_sensor_locations.csv](https://github.com/liyaguang/DCRNN/blob/master/data/sensor_graph/graph_sensor_locations.csv).
|
||||
```bash
|
||||
python -m scripts.generate_training_data --output_dir=data/METR-LA
|
||||
mkdir -p data/{METR-LA,PEMS-BAY}
|
||||
|
||||
# METR-LA
|
||||
python -m scripts.generate_training_data --output_dir=data/METR-LA --traffic_df_filename=data/metr-la.h5
|
||||
|
||||
# PEMS-BAY
|
||||
python -m scripts.generate_training_data --output_dir=data/PEMS-BAY --traffic_df_filename=data/pems-bay.h5
|
||||
```
|
||||
The generated train/val/test dataset will be saved at `data/METR-LA/{train,val,test}.npz`.
|
||||
The generated train/val/test dataset will be saved at `data/{METR-LA,PEMS-BAY}/{train,val,test}.npz`.
|
||||
|
||||
|
||||
## Run the Pre-trained Model
|
||||
## Run the Pre-trained Model on METR-LA
|
||||
|
||||
```bash
|
||||
python run_demo.py
|
||||
```
|
||||
The generated prediction of DCRNN is in `data/results/dcrnn_predictions_[1-12].h5`.
|
||||
The generated prediction of DCRNN of METR-LA is in `data/results/dcrnn_predictions_[1-12].h5`.
|
||||
|
||||
|
||||
## Model Training
|
||||
```bash
|
||||
python dcrnn_train.py --config_filename=data/model/dcrnn_config.yaml
|
||||
# METR-LA
|
||||
python dcrnn_train.py --config_filename=data/model/dcrnn_la.yaml
|
||||
|
||||
# PEMS-BAY
|
||||
python dcrnn_train.py --config_filename=data/model/dcrnn_bay.yaml
|
||||
```
|
||||
Each epoch takes about 5min with a single GTX 1080 Ti.
|
||||
Each epoch takes about 5min or 10 min on a single GTX 1080 Ti for METR-LA or PEMS-BAY respectively.
|
||||
|
||||
## Graph Construction
|
||||
As the currently implementation is based on pre-calculated road network distances between sensors, it currently only
|
||||
|
|
|
|||
|
|
@ -0,0 +1,39 @@
|
|||
---
|
||||
base_dir: data/model
|
||||
log_level: INFO
|
||||
data:
|
||||
batch_size: 64
|
||||
dataset_dir: data/PEMS-BAY
|
||||
test_batch_size: 64
|
||||
val_batch_size: 64
|
||||
graph_pkl_filename: data/sensor_graph/adj_mx_bay.pkl
|
||||
|
||||
model:
|
||||
cl_decay_steps: 2000
|
||||
filter_type: dual_random_walk
|
||||
horizon: 12
|
||||
input_dim: 2
|
||||
l1_decay: 0
|
||||
max_diffusion_step: 2
|
||||
num_nodes: 325
|
||||
num_rnn_layers: 2
|
||||
output_dim: 1
|
||||
rnn_units: 64
|
||||
seq_len: 12
|
||||
use_curriculum_learning: true
|
||||
|
||||
train:
|
||||
base_lr: 0.01
|
||||
dropout: 0
|
||||
epoch: 0
|
||||
epochs: 100
|
||||
epsilon: 1.0e-3
|
||||
global_step: 0
|
||||
lr_decay_ratio: 0.1
|
||||
max_grad_norm: 5
|
||||
max_to_keep: 100
|
||||
min_learning_rate: 2.0e-06
|
||||
optimizer: adam
|
||||
patience: 50
|
||||
steps: [20, 30, 40, 50]
|
||||
test_every_n_epochs: 10
|
||||
Loading…
Reference in New Issue