ensured row major ordering
This commit is contained in:
parent
6331173f44
commit
d46b605a65
|
|
@ -74,9 +74,10 @@ class DCGRUCell(torch.nn.Module):
|
||||||
def _build_sparse_matrix(L):
|
def _build_sparse_matrix(L):
|
||||||
L = L.tocoo()
|
L = L.tocoo()
|
||||||
indices = np.column_stack((L.row, L.col))
|
indices = np.column_stack((L.row, L.col))
|
||||||
|
# this is to ensure row-major ordering to equal torch.sparse.sparse_reorder(L)
|
||||||
|
indices = indices[np.lexsort((indices[:, 0], indices[:, 1]))]
|
||||||
L = torch.sparse_coo_tensor(indices.T, L.data, L.shape, device=device)
|
L = torch.sparse_coo_tensor(indices.T, L.data, L.shape, device=device)
|
||||||
return L
|
return L
|
||||||
# return torch.sparse.sparse_reorder(L)
|
|
||||||
|
|
||||||
def forward(self, inputs, hx):
|
def forward(self, inputs, hx):
|
||||||
"""Gated recurrent unit (GRU) with Graph Convolution.
|
"""Gated recurrent unit (GRU) with Graph Convolution.
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue