Code refactor.

This commit is contained in:
Yaguang 2018-10-01 17:45:46 -07:00
parent bbc06b6c0c
commit d59d44e4f0
2 changed files with 26 additions and 48 deletions

View File

@ -12,7 +12,6 @@ import yaml
from lib import utils, metrics from lib import utils, metrics
from lib.AMSGrad import AMSGrad from lib.AMSGrad import AMSGrad
from lib.metrics import masked_mae_loss from lib.metrics import masked_mae_loss
from lib.utils import StandardScaler, DataLoader
from model.dcrnn_model import DCRNNModel from model.dcrnn_model import DCRNNModel
@ -31,20 +30,19 @@ class DCRNNSupervisor(object):
# logging. # logging.
self._log_dir = self._get_log_dir(kwargs) self._log_dir = self._get_log_dir(kwargs)
self._logger = utils.get_logger(self._log_dir, __name__, 'info.log') log_level = self._kwargs.get('log_level', 'INFO')
self._logger = utils.get_logger(self._log_dir, __name__, 'info.log', level=log_level)
self._writer = tf.summary.FileWriter(self._log_dir) self._writer = tf.summary.FileWriter(self._log_dir)
self._logger.info(kwargs) self._logger.info(kwargs)
# Data preparation # Data preparation
self._data = self._prepare_data(**self._data_kwargs) self._data = utils.load_dataset(**self._data_kwargs)
for k, v in self._data.items(): for k, v in self._data.items():
if hasattr(v, 'shape'): if hasattr(v, 'shape'):
self._logger.info((k, v.shape)) self._logger.info((k, v.shape))
# Build models. # Build models.
scaler = self._data['scaler'] scaler = self._data['scaler']
self._epoch = 0
with tf.name_scope('Train'): with tf.name_scope('Train'):
with tf.variable_scope('DCRNN', reuse=False): with tf.variable_scope('DCRNN', reuse=False):
self._train_model = DCRNNModel(is_training=True, scaler=scaler, self._train_model = DCRNNModel(is_training=True, scaler=scaler,
@ -88,11 +86,15 @@ class DCRNNSupervisor(object):
global_step = tf.train.get_or_create_global_step() global_step = tf.train.get_or_create_global_step()
self._train_op = optimizer.apply_gradients(zip(grads, tvars), global_step=global_step, name='train_op') self._train_op = optimizer.apply_gradients(zip(grads, tvars), global_step=global_step, name='train_op')
max_to_keep = self._train_kwargs.get('max_to_keep', 100)
self._epoch = 0
self._saver = tf.train.Saver(tf.global_variables(), max_to_keep=max_to_keep)
# Log model statistics. # Log model statistics.
total_trainable_parameter = utils.get_total_trainable_parameter_size() total_trainable_parameter = utils.get_total_trainable_parameter_size()
self._logger.info('Total number of trainable parameters: %d' % total_trainable_parameter) self._logger.info('Total number of trainable parameters: {:d}'.format(total_trainable_parameter))
for var in tf.global_variables(): for var in tf.global_variables():
self._logger.info('%s, %s' % (var.name, var.get_shape())) self._logger.debug('{}, {}'.format(var.name, var.get_shape()))
@staticmethod @staticmethod
def _get_log_dir(kwargs): def _get_log_dir(kwargs):
@ -122,25 +124,6 @@ class DCRNNSupervisor(object):
os.makedirs(log_dir) os.makedirs(log_dir)
return log_dir return log_dir
@staticmethod
def _prepare_data(dataset_dir, **kwargs):
data = {}
for category in ['train', 'val', 'test']:
cat_data = np.load(os.path.join(dataset_dir, category + '.npz'))
data['x_' + category] = cat_data['x']
data['y_' + category] = cat_data['y']
scaler = StandardScaler(mean=data['x_train'][..., 0].mean(), std=data['x_train'][..., 0].std())
# Data format
for category in ['train', 'val', 'test']:
data['x_' + category][..., 0] = scaler.transform(data['x_' + category][..., 0])
data['y_' + category][..., 0] = scaler.transform(data['y_' + category][..., 0])
data['train_loader'] = DataLoader(data['x_train'], data['y_train'], kwargs['batch_size'], shuffle=True)
data['val_loader'] = DataLoader(data['x_val'], data['y_val'], kwargs['test_batch_size'], shuffle=False)
data['test_loader'] = DataLoader(data['x_test'], data['y_test'], kwargs['test_batch_size'], shuffle=False)
data['scaler'] = scaler
return data
def run_epoch_generator(self, sess, model, data_generator, return_output=False, training=False, writer=None): def run_epoch_generator(self, sess, model, data_generator, return_output=False, training=False, writer=None):
losses = [] losses = []
maes = [] maes = []
@ -239,7 +222,7 @@ class DCRNNSupervisor(object):
val_results = self.run_epoch_generator(sess, self._test_model, val_results = self.run_epoch_generator(sess, self._test_model,
self._data['val_loader'].get_iterator(), self._data['val_loader'].get_iterator(),
training=False) training=False)
val_loss, val_mae = val_results['loss'], val_results['mae'] val_loss, val_mae = np.asscalar(val_results['loss']), np.asscalar(val_results['mae'])
utils.add_simple_summary(self._writer, utils.add_simple_summary(self._writer,
['loss/train_loss', 'metric/train_mae', 'loss/val_loss', 'metric/val_mae'], ['loss/train_loss', 'metric/train_mae', 'loss/val_loss', 'metric/val_mae'],
@ -249,11 +232,11 @@ class DCRNNSupervisor(object):
self._epoch, epochs, global_step, train_mae, val_mae, new_lr, (end_time - start_time)) self._epoch, epochs, global_step, train_mae, val_mae, new_lr, (end_time - start_time))
self._logger.info(message) self._logger.info(message)
if self._epoch % test_every_n_epochs == test_every_n_epochs - 1: if self._epoch % test_every_n_epochs == test_every_n_epochs - 1:
self.test_and_write_result(sess, global_step) self.evaluate(sess)
if val_loss <= min_val_loss: if val_loss <= min_val_loss:
wait = 0 wait = 0
if save_model > 0: if save_model > 0:
model_filename = self.save_model(sess, saver, val_loss) model_filename = self.save(sess, val_loss)
self._logger.info( self._logger.info(
'Val loss decrease from %.4f to %.4f, saving to %s' % (min_val_loss, val_loss, model_filename)) 'Val loss decrease from %.4f to %.4f, saving to %s' % (min_val_loss, val_loss, model_filename))
min_val_loss = val_loss min_val_loss = val_loss
@ -270,7 +253,8 @@ class DCRNNSupervisor(object):
sys.stdout.flush() sys.stdout.flush()
return np.min(history) return np.min(history)
def test_and_write_result(self, sess, global_step, **kwargs): def evaluate(self, sess, **kwargs):
global_step = sess.run(tf.train.get_or_create_global_step())
test_results = self.run_epoch_generator(sess, self._test_model, test_results = self.run_epoch_generator(sess, self._test_model,
self._data['test_loader'].get_iterator(), self._data['test_loader'].get_iterator(),
return_output=True, return_output=True,
@ -285,12 +269,10 @@ class DCRNNSupervisor(object):
predictions = [] predictions = []
y_truths = [] y_truths = []
for horizon_i in range(self._data['y_test'].shape[1]): for horizon_i in range(self._data['y_test'].shape[1]):
y_truth = self._data['y_test'][:, horizon_i, :, 0] y_truth = scaler.inverse_transform(self._data['y_test'][:, horizon_i, :, 0])
y_truth = scaler.inverse_transform(y_truth)
y_truths.append(y_truth) y_truths.append(y_truth)
y_pred = y_preds[:y_truth.shape[0], horizon_i, :, 0] y_pred = scaler.inverse_transform(y_preds[:y_truth.shape[0], horizon_i, :, 0])
y_pred = scaler.inverse_transform(y_pred)
predictions.append(y_pred) predictions.append(y_pred)
mae = metrics.masked_mae_np(y_pred, y_truth, null_val=0) mae = metrics.masked_mae_np(y_pred, y_truth, null_val=0)
@ -312,29 +294,25 @@ class DCRNNSupervisor(object):
} }
return outputs return outputs
@staticmethod def load(self, sess, model_filename):
def restore(sess, config):
""" """
Restore from saved model. Restore from saved model.
:param sess: :param sess:
:param config: :param model_filename:
:return: :return:
""" """
model_filename = config['train'].get('model_filename') self._saver.restore(sess, model_filename)
max_to_keep = config['train'].get('max_to_keep', 100)
saver = tf.train.Saver(tf.global_variables(), max_to_keep=max_to_keep)
saver.restore(sess, model_filename)
def save_model(self, sess, saver, val_loss): def save(self, sess, val_loss):
config_filename = 'config_{}.yaml'.format(self._epoch)
config = dict(self._kwargs) config = dict(self._kwargs)
global_step = np.asscalar(sess.run(tf.train.get_or_create_global_step())) global_step = np.asscalar(sess.run(tf.train.get_or_create_global_step()))
prefix = os.path.join(self._log_dir, 'models-{:.4f}'.format(val_loss))
config['train']['epoch'] = self._epoch config['train']['epoch'] = self._epoch
config['train']['global_step'] = global_step config['train']['global_step'] = global_step
config['train']['log_dir'] = self._log_dir config['train']['log_dir'] = self._log_dir
config['train']['model_filename'] = saver.save(sess, config['train']['model_filename'] = self._saver.save(sess, prefix, global_step=global_step,
os.path.join(self._log_dir, 'models-{:.4f}'.format(val_loss)), write_meta_graph=False)
global_step=global_step, write_meta_graph=False) config_filename = 'config_{}.yaml'.format(self._epoch)
with open(os.path.join(self._log_dir, config_filename), 'w') as f: with open(os.path.join(self._log_dir, config_filename), 'w') as f:
yaml.dump(config, f, default_flow_style=False) yaml.dump(config, f, default_flow_style=False)
return config['train']['model_filename'] return config['train']['model_filename']

View File

@ -20,8 +20,8 @@ def run_dcrnn(args):
_, _, adj_mx = load_graph_data(graph_pkl_filename) _, _, adj_mx = load_graph_data(graph_pkl_filename)
with tf.Session(config=tf_config) as sess: with tf.Session(config=tf_config) as sess:
supervisor = DCRNNSupervisor(adj_mx=adj_mx, **config) supervisor = DCRNNSupervisor(adj_mx=adj_mx, **config)
supervisor.restore(sess, config=config) supervisor.load(sess, config['train']['model_filename'])
outputs = supervisor.test_and_write_result(sess, config['train']['global_step']) outputs = supervisor.evaluate(sess)
np.savez_compressed(args.output_filename, **outputs) np.savez_compressed(args.output_filename, **outputs)
print('Predictions saved as {}.'.format(args.output_filename)) print('Predictions saved as {}.'.format(args.output_filename))