Implemented eval and function
This commit is contained in:
parent
20c6aa5862
commit
d9f41172dc
|
|
@ -71,6 +71,27 @@ class DCRNNSupervisor:
|
|||
kwargs.update(self._train_kwargs)
|
||||
return self._train(**kwargs)
|
||||
|
||||
def evaluate(self, dataset='val'):
|
||||
"""
|
||||
Computes mean L1Loss
|
||||
:return: mean L1Loss
|
||||
"""
|
||||
self.dcrnn_model = self.dcrnn_model.eval()
|
||||
|
||||
val_iterator = self._data['{}_loader'.format(dataset)].get_iterator()
|
||||
losses = []
|
||||
criterion = torch.nn.L1Loss()
|
||||
|
||||
for _, (x, y) in enumerate(val_iterator):
|
||||
x, y = self._get_x_y(x, y)
|
||||
x, y = self._get_x_y_in_correct_dims(x, y)
|
||||
|
||||
output = self.dcrnn_model(x)
|
||||
loss = self._compute_loss(y, output, criterion)
|
||||
losses.append(loss.item())
|
||||
|
||||
return np.mean(losses)
|
||||
|
||||
def _train(self, base_lr,
|
||||
steps, patience=50, epochs=100,
|
||||
min_learning_rate=2e-6, lr_decay_ratio=0.1, log_every=10, save_model=1,
|
||||
|
|
@ -79,6 +100,8 @@ class DCRNNSupervisor:
|
|||
optimizer = torch.optim.Adam(self.dcrnn_model.parameters(), lr=base_lr)
|
||||
criterion = torch.nn.L1Loss() # mae loss
|
||||
|
||||
self.dcrnn_model = self.dcrnn_model.train()
|
||||
|
||||
batches_seen = 0
|
||||
self._logger.info('Start training ...')
|
||||
for epoch_num in range(epochs):
|
||||
|
|
@ -106,12 +129,20 @@ class DCRNNSupervisor:
|
|||
|
||||
optimizer.step()
|
||||
|
||||
val_loss = self.evaluate(dataset='val')
|
||||
end_time = time.time()
|
||||
if epoch_num % log_every == 0:
|
||||
message = 'Epoch [{}/{}] ({}) train_mae: {:.4f}, val_mae: {:.4f} ' \
|
||||
'lr:{:.6f} {:.1f}s'.format(epoch_num, epochs, batches_seen,
|
||||
np.mean(losses), 0.0,
|
||||
0.0, (end_time - start_time))
|
||||
'{:.1f}s'.format(epoch_num, epochs, batches_seen,
|
||||
np.mean(losses), val_loss,
|
||||
(end_time - start_time))
|
||||
self._logger.info(message)
|
||||
|
||||
if epoch_num % test_every_n_epochs == 0:
|
||||
test_loss = self.evaluate(dataset='test')
|
||||
message = 'Epoch [{}/{}] ({}) train_mae: {:.4f}, test_mae: {:.4f} ' \
|
||||
'{:.1f}s'.format(epoch_num, epochs, batches_seen,
|
||||
np.mean(losses), test_loss, (end_time - start_time))
|
||||
self._logger.info(message)
|
||||
|
||||
def _get_x_y(self, x, y):
|
||||
|
|
|
|||
Loading…
Reference in New Issue