Implemented eval and function

This commit is contained in:
Chintan Shah 2019-10-04 17:07:38 -04:00
parent 20c6aa5862
commit d9f41172dc
1 changed files with 34 additions and 3 deletions

View File

@ -71,6 +71,27 @@ class DCRNNSupervisor:
kwargs.update(self._train_kwargs)
return self._train(**kwargs)
def evaluate(self, dataset='val'):
"""
Computes mean L1Loss
:return: mean L1Loss
"""
self.dcrnn_model = self.dcrnn_model.eval()
val_iterator = self._data['{}_loader'.format(dataset)].get_iterator()
losses = []
criterion = torch.nn.L1Loss()
for _, (x, y) in enumerate(val_iterator):
x, y = self._get_x_y(x, y)
x, y = self._get_x_y_in_correct_dims(x, y)
output = self.dcrnn_model(x)
loss = self._compute_loss(y, output, criterion)
losses.append(loss.item())
return np.mean(losses)
def _train(self, base_lr,
steps, patience=50, epochs=100,
min_learning_rate=2e-6, lr_decay_ratio=0.1, log_every=10, save_model=1,
@ -79,6 +100,8 @@ class DCRNNSupervisor:
optimizer = torch.optim.Adam(self.dcrnn_model.parameters(), lr=base_lr)
criterion = torch.nn.L1Loss() # mae loss
self.dcrnn_model = self.dcrnn_model.train()
batches_seen = 0
self._logger.info('Start training ...')
for epoch_num in range(epochs):
@ -106,12 +129,20 @@ class DCRNNSupervisor:
optimizer.step()
val_loss = self.evaluate(dataset='val')
end_time = time.time()
if epoch_num % log_every == 0:
message = 'Epoch [{}/{}] ({}) train_mae: {:.4f}, val_mae: {:.4f} ' \
'lr:{:.6f} {:.1f}s'.format(epoch_num, epochs, batches_seen,
np.mean(losses), 0.0,
0.0, (end_time - start_time))
'{:.1f}s'.format(epoch_num, epochs, batches_seen,
np.mean(losses), val_loss,
(end_time - start_time))
self._logger.info(message)
if epoch_num % test_every_n_epochs == 0:
test_loss = self.evaluate(dataset='test')
message = 'Epoch [{}/{}] ({}) train_mae: {:.4f}, test_mae: {:.4f} ' \
'{:.1f}s'.format(epoch_num, epochs, batches_seen,
np.mean(losses), test_loss, (end_time - start_time))
self._logger.info(message)
def _get_x_y(self, x, y):