diff --git a/DCRNN_CPU b/DCRNN_CPU index 2a7e78a..de4e4e8 100644 --- a/DCRNN_CPU +++ b/DCRNN_CPU @@ -1,3 +1,3 @@ -FROM tensorflow/tensorflow:latest-py3 +FROM ufoym/deepo:cpu COPY requirements.txt . RUN pip install -r requirements.txt diff --git a/model/pytorch/dcrnn_cell.py b/model/pytorch/dcrnn_cell.py new file mode 100644 index 0000000..d8f045c --- /dev/null +++ b/model/pytorch/dcrnn_cell.py @@ -0,0 +1,188 @@ +from typing import Optional + +import torch +from torch import Tensor + +from lib import utils + + +class LayerParams: + def __init__(self, rnn_network: torch.nn.RNN, type: str): + self._rnn_network = rnn_network + self._params_dict = {} + self._biases_dict = {} + self._type = type + + def get_weights(self, shape): + if shape not in self._params_dict: + nn_param = torch.nn.init.xavier_normal(torch.empty(*shape)) + self._params_dict[shape] = nn_param + self._rnn_network.register_parameter('{}_weight_{}'.format(self._type, str(shape)), + nn_param) + return self._params_dict[shape] + + def get_biases(self, length, bias_start=0.0): + if length not in self._biases_dict: + biases = torch.nn.init.constant(torch.empty(length), bias_start) + self._biases_dict[length] = biases + self._rnn_network.register_parameter('{}_biases_{}'.format(self._type, str(length)), + biases) + + return self._biases_dict[length] + + +class DCGRUCell(torch.nn.RNN): + def __init__(self, num_units, adj_mx, max_diffusion_step, num_nodes, input_size: int, + hidden_size: int, + num_layers: int = 1, + num_proj=None, + nonlinearity='tanh', filter_type="laplacian", use_gc_for_ru=True): + """ + + :param num_units: + :param adj_mx: + :param max_diffusion_step: + :param num_nodes: + :param input_size: + :param num_proj: + :param nonlinearity: + :param filter_type: "laplacian", "random_walk", "dual_random_walk". + :param use_gc_for_ru: whether to use Graph convolution to calculate the reset and update gates. + """ + super(DCGRUCell, self).__init__(input_size, hidden_size, bias=True, + # bias param does not exist in tf code? + num_layers=num_layers, + nonlinearity=nonlinearity) + self._activation = torch.tanh if nonlinearity == 'tanh' else torch.relu + # support other nonlinearities up here? + self._num_nodes = num_nodes + self._num_proj = num_proj + self._num_units = num_units + self._max_diffusion_step = max_diffusion_step + self._supports = [] + self._use_gc_for_ru = use_gc_for_ru + supports = [] + if filter_type == "laplacian": + supports.append(utils.calculate_scaled_laplacian(adj_mx, lambda_max=None)) + elif filter_type == "random_walk": + supports.append(utils.calculate_random_walk_matrix(adj_mx).T) + elif filter_type == "dual_random_walk": + supports.append(utils.calculate_random_walk_matrix(adj_mx).T) + supports.append(utils.calculate_random_walk_matrix(adj_mx.T).T) + else: + supports.append(utils.calculate_scaled_laplacian(adj_mx)) + for support in supports: + self._supports.append(self._build_sparse_matrix(support)) + + self._proj_weights = torch.nn.Parameter(torch.randn(self._num_units, self._num_proj)) + self._fc_params = LayerParams(self, 'fc') + self._gconv_params = LayerParams(self, 'gconv') + + @property + def state_size(self): + return self._num_nodes * self._num_units + + @property + def output_size(self): + output_size = self._num_nodes * self._num_units + if self._num_proj is not None: + output_size = self._num_nodes * self._num_proj + return output_size + + def forward(self, input: Tensor, hx: Optional[Tensor] = ...): + """Gated recurrent unit (GRU) with Graph Convolution. + :param input: (B, num_nodes * input_dim) + + :return + - Output: A `2-D` tensor with shape `[batch_size x self.output_size]`. + - New state: Either a single `2-D` tensor, or a tuple of tensors matching + the arity and shapes of `state` + """ + output_size = 2 * self._num_units + # We start with bias of 1.0 to not reset and not update. + if self._use_gc_for_ru: + fn = self._gconv + else: + fn = self._fc + value = torch.sigmoid(fn(input, hx, output_size, bias_start=1.0)) + value = torch.reshape(value, (-1, self._num_nodes, output_size)) + r, u = torch.split(tensor=value, split_size_or_sections=2, dim=-1) + r = torch.reshape(r, (-1, self._num_nodes * self._num_units)) + u = torch.reshape(u, (-1, self._num_nodes * self._num_units)) + + c = self._gconv(input, r * hx, self._num_units) + if self._activation is not None: + c = self._activation(c) + + output = new_state = u * hx + (1 - u) * c + if self._num_proj is not None: + batch_size = input.shape[0] + output = torch.reshape(new_state, shape=(-1, self._num_units)) + output = torch.reshape(torch.matmul(output, self._proj_weights), + shape=(batch_size, self.output_size)) + return output, new_state + + @staticmethod + def _concat(x, x_): + x_ = x_.unsqueeze(0) + return torch.cat([x, x_], dim=0) + + def _fc(self, inputs, state, output_size, bias_start=0.0): + batch_size = inputs.shape[0] + inputs = torch.reshape(inputs, (batch_size * self._num_nodes, -1)) + state = torch.reshape(state, (batch_size * self._num_nodes, -1)) + inputs_and_state = torch.cat([inputs, state], dim=-1) + input_size = inputs_and_state.shape[-1] + weights = self._fc_params.get_weights((input_size, output_size)) + value = torch.sigmoid(torch.matmul(inputs_and_state, weights)) + biases = self._fc_params.get_biases(output_size, bias_start) + value += biases + return value + + def _gconv(self, inputs, state, output_size, bias_start=0.0): + """Graph convolution between input and the graph matrix. + + :param args: a 2D Tensor or a list of 2D, batch x n, Tensors. + :param output_size: + :param bias: + :param bias_start: + :return: + """ + # Reshape input and state to (batch_size, num_nodes, input_dim/state_dim) + batch_size = inputs.shape[0] + inputs = torch.reshape(inputs, (batch_size, self._num_nodes, -1)) + state = torch.reshape(state, (batch_size, self._num_nodes, -1)) + inputs_and_state = torch.cat([inputs, state], dim=2) + input_size = inputs_and_state.shape[2].value + dtype = inputs.dtype + + x = inputs_and_state + x0 = x.permute(1, 2, 0) # (num_nodes, total_arg_size, batch_size) + x0 = torch.reshape(x0, shape=[self._num_nodes, input_size * batch_size]) + x = torch.unsqueeze(x0, 0) + + if self._max_diffusion_step == 0: + pass + else: + for support in self._supports: + # https://discuss.pytorch.org/t/sparse-x-dense-dense-matrix-multiplication/6116/7 + x1 = torch.mm(support, x0) + x = self._concat(x, x1) + + for k in range(2, self._max_diffusion_step + 1): + x2 = 2 * torch.mm(support, x1) - x0 + x = self._concat(x, x2) + x1, x0 = x2, x1 + + num_matrices = len(self._supports) * self._max_diffusion_step + 1 # Adds for x itself. + x = torch.reshape(x, shape=[num_matrices, self._num_nodes, input_size, batch_size]) + x = x.permute(3, 1, 2, 0) # (batch_size, num_nodes, input_size, order) + x = torch.reshape(x, shape=[batch_size * self._num_nodes, input_size * num_matrices]) + + weights = self._gconv_params.get_weights((input_size * num_matrices, output_size)) + x = torch.matmul(x, weights) # (batch_size * self._num_nodes, output_size) + + biases = self._gconv_params.get_biases(output_size, bias_start) + x += biases + # Reshape res back to 2D: (batch_size, num_node, state_dim) -> (batch_size, num_node * state_dim) + return torch.reshape(x, [batch_size, self._num_nodes * output_size]) diff --git a/requirements.txt b/requirements.txt index eb89a38..3dfb324 100644 --- a/requirements.txt +++ b/requirements.txt @@ -4,4 +4,6 @@ numpy>=1.12.1 pandas>=0.19.2 pyyaml statsmodels -tensorflow>=1.3.0 \ No newline at end of file +tensorflow>=1.3.0 +torch +tables \ No newline at end of file