Dirty commit - setup model but [GRUCell] not working, tried ParameterList, did not work

This commit is contained in:
Chintan Shah 2019-10-02 18:09:33 -04:00
parent c876cbfba3
commit f96a8c0d59
3 changed files with 81 additions and 35 deletions

33
dcrnn_train_pytorch.py Normal file
View File

@ -0,0 +1,33 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import tensorflow as tf
import yaml
from lib.utils import load_graph_data
from model.pytorch.dcrnn_supervisor import DCRNNSupervisor
def main(args):
with open(args.config_filename) as f:
supervisor_config = yaml.load(f)
graph_pkl_filename = supervisor_config['data'].get('graph_pkl_filename')
sensor_ids, sensor_id_to_ind, adj_mx = load_graph_data(graph_pkl_filename)
# if args.use_cpu_only:
# tf_config = tf.ConfigProto(device_count={'GPU': 0})
# with tf.Session(config=tf_config) as sess:
supervisor = DCRNNSupervisor(adj_mx=adj_mx, **supervisor_config)
supervisor.train()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config_filename', default=None, type=str,
help='Configuration filename for restoring the model.')
parser.add_argument('--use_cpu_only', default=False, type=bool, help='Set to true to only use cpu.')
args = parser.parse_args()
main(args)

View File

@ -4,12 +4,27 @@ import torch.nn as nn
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class DCRNNModel:
def __init__(self, is_training, scale_factor, adj_mx, **model_kwargs):
# class DCRNNModel:
# def __init__(self, is_training, adj_mx, **model_kwargs):
# self.adj_mx = adj_mx
# self.is_training = is_training
# self.max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2))
# self.cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000))
# self.filter_type = model_kwargs.get('filter_type', 'laplacian')
# # self.max_grad_norm = float(model_kwargs.get('max_grad_norm', 5.0))
# self.num_nodes = int(model_kwargs.get('num_nodes', 1))
# self.num_rnn_layers = int(model_kwargs.get('num_rnn_layers', 1))
# self.rnn_units = int(model_kwargs.get('rnn_units'))
# self.hidden_state_size = self.num_nodes * self.rnn_units
class EncoderModel(nn.Module):
def __init__(self, is_training, adj_mx, **model_kwargs):
# super().__init__(is_training, adj_mx, **model_kwargs)
# https://pytorch.org/docs/stable/nn.html#gru
super().__init__()
self.adj_mx = adj_mx
self.is_training = is_training
self.scale_factor = scale_factor
self.max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2))
self.cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000))
self.filter_type = model_kwargs.get('filter_type', 'laplacian')
@ -18,25 +33,13 @@ class DCRNNModel:
self.num_rnn_layers = int(model_kwargs.get('num_rnn_layers', 1))
self.rnn_units = int(model_kwargs.get('rnn_units'))
self.hidden_state_size = self.num_nodes * self.rnn_units
class EncoderModel(nn.Module, DCRNNModel):
def __init__(self, is_training, scaler, adj_mx, **model_kwargs):
super().__init__(is_training, scaler, adj_mx, **model_kwargs)
# https://pytorch.org/docs/stable/nn.html#gru
self.input_dim = int(model_kwargs.get('input_dim', 1))
self.seq_len = int(model_kwargs.get('seq_len')) # for the encoder
@property
def dcgru_layers(self):
# input shape is supposed to be Input (batch_size, num_sensor*input_dim)
# first layer takes input shape and subsequent layer take input from the first layer
return [nn.GRUCell(input_size=self.num_nodes * self.input_dim,
hidden_size=self.hidden_state_size,
bias=True)] + [nn.GRUCell(input_size=self.hidden_state_size,
hidden_size=self.hidden_state_size,
bias=True) for _ in
range(self.num_rnn_layers - 1)]
self.dcgru_layers = [nn.GRUCell(input_size=self.num_nodes * self.input_dim,
hidden_size=self.hidden_state_size,
bias=True)] + [nn.GRUCell(input_size=self.hidden_state_size,
hidden_size=self.hidden_state_size,
bias=True) for _ in range(self.num_rnn_layers - 1)]
def forward(self, inputs, hidden_state=None):
"""
@ -61,22 +64,30 @@ class EncoderModel(nn.Module, DCRNNModel):
return output, torch.cat(hidden_states, dim=1) # runs in O(num_layers) so not too slow # todo: check dim
class DecoderModel(nn.Module, DCRNNModel):
def __init__(self, is_training, scale_factor, adj_mx, **model_kwargs):
super().__init__(is_training, scale_factor, adj_mx, **model_kwargs)
class DecoderModel(nn.Module):
def __init__(self, is_training, adj_mx, **model_kwargs):
# super().__init__(is_training, adj_mx, **model_kwargs)
super().__init__()
self.adj_mx = adj_mx
self.is_training = is_training
self.max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2))
self.cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000))
self.filter_type = model_kwargs.get('filter_type', 'laplacian')
# self.max_grad_norm = float(model_kwargs.get('max_grad_norm', 5.0))
self.num_nodes = int(model_kwargs.get('num_nodes', 1))
self.num_rnn_layers = int(model_kwargs.get('num_rnn_layers', 1))
self.rnn_units = int(model_kwargs.get('rnn_units'))
self.hidden_state_size = self.num_nodes * self.rnn_units
self.output_dim = int(model_kwargs.get('output_dim', 1))
self.use_curriculum_learning = bool(model_kwargs.get('use_curriculum_learning', False))
self.horizon = int(model_kwargs.get('horizon', 1)) # for the decoder
self.projection_layer = nn.Linear(self.hidden_state_size, self.num_nodes * self.output_dim)
@property
def dcgru_layers(self):
return [nn.GRUCell(input_size=self.num_nodes * self.output_dim,
hidden_size=self.hidden_state_size,
bias=True)] + [nn.GRUCell(input_size=self.hidden_state_size,
hidden_size=self.hidden_state_size,
bias=True) for _ in
range(self.num_rnn_layers - 1)]
self.dcgru_layers = [nn.GRUCell(input_size=self.num_nodes * self.output_dim,
hidden_size=self.hidden_state_size,
bias=True)] + [nn.GRUCell(input_size=self.hidden_state_size,
hidden_size=self.hidden_state_size,
bias=True) for _ in
range(self.num_rnn_layers - 1)]
def forward(self, inputs, hidden_state=None):
"""

View File

@ -9,9 +9,7 @@ from model.pytorch.dcrnn_model import EncoderModel, DecoderModel
class DCRNNSupervisor:
def __init__(self, adj_mx, encoder_model: EncoderModel, decoder_model: DecoderModel, **kwargs):
self.decoder_model = decoder_model
self.encoder_model = encoder_model
def __init__(self, adj_mx, **kwargs):
self._kwargs = kwargs
self._data_kwargs = kwargs.get('data')
self._model_kwargs = kwargs.get('model')
@ -35,6 +33,10 @@ class DCRNNSupervisor:
self._model_kwargs.get('use_curriculum_learning', False))
self.horizon = int(self._model_kwargs.get('horizon', 1)) # for the decoder
# setup model
self.encoder_model = EncoderModel(True, adj_mx, **self._model_kwargs)
self.decoder_model = DecoderModel(True, adj_mx, **self._model_kwargs)
@staticmethod
def _get_log_dir(kwargs):
log_dir = kwargs['train'].get('log_dir')