Dirty commit - setup model but [GRUCell] not working, tried ParameterList, did not work
This commit is contained in:
parent
c876cbfba3
commit
f96a8c0d59
|
|
@ -0,0 +1,33 @@
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import tensorflow as tf
|
||||||
|
import yaml
|
||||||
|
|
||||||
|
from lib.utils import load_graph_data
|
||||||
|
from model.pytorch.dcrnn_supervisor import DCRNNSupervisor
|
||||||
|
|
||||||
|
def main(args):
|
||||||
|
with open(args.config_filename) as f:
|
||||||
|
supervisor_config = yaml.load(f)
|
||||||
|
|
||||||
|
graph_pkl_filename = supervisor_config['data'].get('graph_pkl_filename')
|
||||||
|
sensor_ids, sensor_id_to_ind, adj_mx = load_graph_data(graph_pkl_filename)
|
||||||
|
|
||||||
|
# if args.use_cpu_only:
|
||||||
|
# tf_config = tf.ConfigProto(device_count={'GPU': 0})
|
||||||
|
# with tf.Session(config=tf_config) as sess:
|
||||||
|
supervisor = DCRNNSupervisor(adj_mx=adj_mx, **supervisor_config)
|
||||||
|
|
||||||
|
supervisor.train()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--config_filename', default=None, type=str,
|
||||||
|
help='Configuration filename for restoring the model.')
|
||||||
|
parser.add_argument('--use_cpu_only', default=False, type=bool, help='Set to true to only use cpu.')
|
||||||
|
args = parser.parse_args()
|
||||||
|
main(args)
|
||||||
|
|
@ -4,12 +4,27 @@ import torch.nn as nn
|
||||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
|
|
||||||
|
|
||||||
class DCRNNModel:
|
# class DCRNNModel:
|
||||||
def __init__(self, is_training, scale_factor, adj_mx, **model_kwargs):
|
# def __init__(self, is_training, adj_mx, **model_kwargs):
|
||||||
|
# self.adj_mx = adj_mx
|
||||||
|
# self.is_training = is_training
|
||||||
|
# self.max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2))
|
||||||
|
# self.cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000))
|
||||||
|
# self.filter_type = model_kwargs.get('filter_type', 'laplacian')
|
||||||
|
# # self.max_grad_norm = float(model_kwargs.get('max_grad_norm', 5.0))
|
||||||
|
# self.num_nodes = int(model_kwargs.get('num_nodes', 1))
|
||||||
|
# self.num_rnn_layers = int(model_kwargs.get('num_rnn_layers', 1))
|
||||||
|
# self.rnn_units = int(model_kwargs.get('rnn_units'))
|
||||||
|
# self.hidden_state_size = self.num_nodes * self.rnn_units
|
||||||
|
|
||||||
|
|
||||||
|
class EncoderModel(nn.Module):
|
||||||
|
def __init__(self, is_training, adj_mx, **model_kwargs):
|
||||||
|
# super().__init__(is_training, adj_mx, **model_kwargs)
|
||||||
|
# https://pytorch.org/docs/stable/nn.html#gru
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.adj_mx = adj_mx
|
self.adj_mx = adj_mx
|
||||||
self.is_training = is_training
|
self.is_training = is_training
|
||||||
self.scale_factor = scale_factor
|
|
||||||
self.max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2))
|
self.max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2))
|
||||||
self.cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000))
|
self.cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000))
|
||||||
self.filter_type = model_kwargs.get('filter_type', 'laplacian')
|
self.filter_type = model_kwargs.get('filter_type', 'laplacian')
|
||||||
|
|
@ -18,25 +33,13 @@ class DCRNNModel:
|
||||||
self.num_rnn_layers = int(model_kwargs.get('num_rnn_layers', 1))
|
self.num_rnn_layers = int(model_kwargs.get('num_rnn_layers', 1))
|
||||||
self.rnn_units = int(model_kwargs.get('rnn_units'))
|
self.rnn_units = int(model_kwargs.get('rnn_units'))
|
||||||
self.hidden_state_size = self.num_nodes * self.rnn_units
|
self.hidden_state_size = self.num_nodes * self.rnn_units
|
||||||
|
|
||||||
|
|
||||||
class EncoderModel(nn.Module, DCRNNModel):
|
|
||||||
def __init__(self, is_training, scaler, adj_mx, **model_kwargs):
|
|
||||||
super().__init__(is_training, scaler, adj_mx, **model_kwargs)
|
|
||||||
# https://pytorch.org/docs/stable/nn.html#gru
|
|
||||||
self.input_dim = int(model_kwargs.get('input_dim', 1))
|
self.input_dim = int(model_kwargs.get('input_dim', 1))
|
||||||
self.seq_len = int(model_kwargs.get('seq_len')) # for the encoder
|
self.seq_len = int(model_kwargs.get('seq_len')) # for the encoder
|
||||||
|
self.dcgru_layers = [nn.GRUCell(input_size=self.num_nodes * self.input_dim,
|
||||||
@property
|
hidden_size=self.hidden_state_size,
|
||||||
def dcgru_layers(self):
|
bias=True)] + [nn.GRUCell(input_size=self.hidden_state_size,
|
||||||
# input shape is supposed to be Input (batch_size, num_sensor*input_dim)
|
hidden_size=self.hidden_state_size,
|
||||||
# first layer takes input shape and subsequent layer take input from the first layer
|
bias=True) for _ in range(self.num_rnn_layers - 1)]
|
||||||
return [nn.GRUCell(input_size=self.num_nodes * self.input_dim,
|
|
||||||
hidden_size=self.hidden_state_size,
|
|
||||||
bias=True)] + [nn.GRUCell(input_size=self.hidden_state_size,
|
|
||||||
hidden_size=self.hidden_state_size,
|
|
||||||
bias=True) for _ in
|
|
||||||
range(self.num_rnn_layers - 1)]
|
|
||||||
|
|
||||||
def forward(self, inputs, hidden_state=None):
|
def forward(self, inputs, hidden_state=None):
|
||||||
"""
|
"""
|
||||||
|
|
@ -61,22 +64,30 @@ class EncoderModel(nn.Module, DCRNNModel):
|
||||||
return output, torch.cat(hidden_states, dim=1) # runs in O(num_layers) so not too slow # todo: check dim
|
return output, torch.cat(hidden_states, dim=1) # runs in O(num_layers) so not too slow # todo: check dim
|
||||||
|
|
||||||
|
|
||||||
class DecoderModel(nn.Module, DCRNNModel):
|
class DecoderModel(nn.Module):
|
||||||
def __init__(self, is_training, scale_factor, adj_mx, **model_kwargs):
|
def __init__(self, is_training, adj_mx, **model_kwargs):
|
||||||
super().__init__(is_training, scale_factor, adj_mx, **model_kwargs)
|
# super().__init__(is_training, adj_mx, **model_kwargs)
|
||||||
|
super().__init__()
|
||||||
|
self.adj_mx = adj_mx
|
||||||
|
self.is_training = is_training
|
||||||
|
self.max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2))
|
||||||
|
self.cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000))
|
||||||
|
self.filter_type = model_kwargs.get('filter_type', 'laplacian')
|
||||||
|
# self.max_grad_norm = float(model_kwargs.get('max_grad_norm', 5.0))
|
||||||
|
self.num_nodes = int(model_kwargs.get('num_nodes', 1))
|
||||||
|
self.num_rnn_layers = int(model_kwargs.get('num_rnn_layers', 1))
|
||||||
|
self.rnn_units = int(model_kwargs.get('rnn_units'))
|
||||||
|
self.hidden_state_size = self.num_nodes * self.rnn_units
|
||||||
self.output_dim = int(model_kwargs.get('output_dim', 1))
|
self.output_dim = int(model_kwargs.get('output_dim', 1))
|
||||||
self.use_curriculum_learning = bool(model_kwargs.get('use_curriculum_learning', False))
|
self.use_curriculum_learning = bool(model_kwargs.get('use_curriculum_learning', False))
|
||||||
self.horizon = int(model_kwargs.get('horizon', 1)) # for the decoder
|
self.horizon = int(model_kwargs.get('horizon', 1)) # for the decoder
|
||||||
self.projection_layer = nn.Linear(self.hidden_state_size, self.num_nodes * self.output_dim)
|
self.projection_layer = nn.Linear(self.hidden_state_size, self.num_nodes * self.output_dim)
|
||||||
|
self.dcgru_layers = [nn.GRUCell(input_size=self.num_nodes * self.output_dim,
|
||||||
@property
|
hidden_size=self.hidden_state_size,
|
||||||
def dcgru_layers(self):
|
bias=True)] + [nn.GRUCell(input_size=self.hidden_state_size,
|
||||||
return [nn.GRUCell(input_size=self.num_nodes * self.output_dim,
|
hidden_size=self.hidden_state_size,
|
||||||
hidden_size=self.hidden_state_size,
|
bias=True) for _ in
|
||||||
bias=True)] + [nn.GRUCell(input_size=self.hidden_state_size,
|
range(self.num_rnn_layers - 1)]
|
||||||
hidden_size=self.hidden_state_size,
|
|
||||||
bias=True) for _ in
|
|
||||||
range(self.num_rnn_layers - 1)]
|
|
||||||
|
|
||||||
def forward(self, inputs, hidden_state=None):
|
def forward(self, inputs, hidden_state=None):
|
||||||
"""
|
"""
|
||||||
|
|
|
||||||
|
|
@ -9,9 +9,7 @@ from model.pytorch.dcrnn_model import EncoderModel, DecoderModel
|
||||||
|
|
||||||
|
|
||||||
class DCRNNSupervisor:
|
class DCRNNSupervisor:
|
||||||
def __init__(self, adj_mx, encoder_model: EncoderModel, decoder_model: DecoderModel, **kwargs):
|
def __init__(self, adj_mx, **kwargs):
|
||||||
self.decoder_model = decoder_model
|
|
||||||
self.encoder_model = encoder_model
|
|
||||||
self._kwargs = kwargs
|
self._kwargs = kwargs
|
||||||
self._data_kwargs = kwargs.get('data')
|
self._data_kwargs = kwargs.get('data')
|
||||||
self._model_kwargs = kwargs.get('model')
|
self._model_kwargs = kwargs.get('model')
|
||||||
|
|
@ -35,6 +33,10 @@ class DCRNNSupervisor:
|
||||||
self._model_kwargs.get('use_curriculum_learning', False))
|
self._model_kwargs.get('use_curriculum_learning', False))
|
||||||
self.horizon = int(self._model_kwargs.get('horizon', 1)) # for the decoder
|
self.horizon = int(self._model_kwargs.get('horizon', 1)) # for the decoder
|
||||||
|
|
||||||
|
# setup model
|
||||||
|
self.encoder_model = EncoderModel(True, adj_mx, **self._model_kwargs)
|
||||||
|
self.decoder_model = DecoderModel(True, adj_mx, **self._model_kwargs)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _get_log_dir(kwargs):
|
def _get_log_dir(kwargs):
|
||||||
log_dir = kwargs['train'].get('log_dir')
|
log_dir = kwargs['train'].get('log_dir')
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue