import os import pandas as pd import sys import tensorflow as tf import yaml from lib.dcrnn_utils import load_graph_data from model.dcrnn_supervisor import DCRNNSupervisor flags = tf.app.flags FLAGS = flags.FLAGS flags.DEFINE_bool('use_cpu_only', False, 'Whether to run tensorflow on cpu.') def run_dcrnn(traffic_reading_df): # run_id = 'dcrnn_DR_2_h_12_64-64_lr_0.01_bs_64_d_0.00_sl_12_MAE_1207002222' run_id = 'dcrnn_DR_2_h_12_64-64_lr_0.01_bs_64_d_0.00_sl_12_MAE_0606021843' log_dir = os.path.join('data/model', run_id) config_filename = 'config_75.yaml' graph_pkl_filename = 'data/sensor_graph/adj_mx.pkl' with open(os.path.join(log_dir, config_filename)) as f: config = yaml.load(f) tf_config = tf.ConfigProto() if FLAGS.use_cpu_only: tf_config = tf.ConfigProto(device_count={'GPU': 0}) tf_config.gpu_options.allow_growth = True _, _, adj_mx = load_graph_data(graph_pkl_filename) with tf.Session(config=tf_config) as sess: supervisor = DCRNNSupervisor(traffic_reading_df, config=config, adj_mx=adj_mx) supervisor.restore(sess, config=config) df_preds = supervisor.test_and_write_result(sess, config['global_step']) for horizon_i in df_preds: df_pred = df_preds[horizon_i] filename = os.path.join('data/results/', 'dcrnn_prediction_%d.h5' % (horizon_i + 1)) df_pred.to_hdf(filename, 'results') print('Predictions saved as data/results/dcrnn_seq2seq_prediction_[1-12].h5...') if __name__ == '__main__': sys.path.append(os.getcwd()) traffic_df_filename = 'data/df_highway_2012_4mon_sample.h5' traffic_reading_df = pd.read_hdf(traffic_df_filename) run_dcrnn(traffic_reading_df) # run_fc_lstm(traffic_reading_df)