from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.contrib import legacy_seq2seq from model.tf.dcrnn_cell import DCGRUCell class DCRNNModel(object): def __init__(self, is_training, batch_size, scaler, adj_mx, **model_kwargs): # Scaler for data normalization. self._scaler = scaler # Train and loss self._loss = None self._mae = None self._train_op = None max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2)) cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000)) filter_type = model_kwargs.get('filter_type', 'laplacian') horizon = int(model_kwargs.get('horizon', 1)) max_grad_norm = float(model_kwargs.get('max_grad_norm', 5.0)) num_nodes = int(model_kwargs.get('num_nodes', 1)) num_rnn_layers = int(model_kwargs.get('num_rnn_layers', 1)) rnn_units = int(model_kwargs.get('rnn_units')) seq_len = int(model_kwargs.get('seq_len')) use_curriculum_learning = bool(model_kwargs.get('use_curriculum_learning', False)) input_dim = int(model_kwargs.get('input_dim', 1)) output_dim = int(model_kwargs.get('output_dim', 1)) # Input (batch_size, timesteps, num_sensor, input_dim) self._inputs = tf.placeholder(tf.float32, shape=(batch_size, seq_len, num_nodes, input_dim), name='inputs') # Labels: (batch_size, timesteps, num_sensor, input_dim), same format with input except the temporal dimension. self._labels = tf.placeholder(tf.float32, shape=(batch_size, horizon, num_nodes, input_dim), name='labels') # GO_SYMBOL = tf.zeros(shape=(batch_size, num_nodes * input_dim)) GO_SYMBOL = tf.zeros(shape=(batch_size, num_nodes * output_dim)) cell = DCGRUCell(rnn_units, adj_mx, max_diffusion_step=max_diffusion_step, num_nodes=num_nodes, filter_type=filter_type) cell_with_projection = DCGRUCell(rnn_units, adj_mx, max_diffusion_step=max_diffusion_step, num_nodes=num_nodes, num_proj=output_dim, filter_type=filter_type) encoding_cells = [cell] * num_rnn_layers decoding_cells = [cell] * (num_rnn_layers - 1) + [cell_with_projection] encoding_cells = tf.contrib.rnn.MultiRNNCell(encoding_cells, state_is_tuple=True) decoding_cells = tf.contrib.rnn.MultiRNNCell(decoding_cells, state_is_tuple=True) global_step = tf.train.get_or_create_global_step() # Outputs: (batch_size, timesteps, num_nodes, output_dim) with tf.variable_scope('DCRNN_SEQ'): inputs = tf.unstack(tf.reshape(self._inputs, (batch_size, seq_len, num_nodes * input_dim)), axis=1) labels = tf.unstack( tf.reshape(self._labels[..., :output_dim], (batch_size, horizon, num_nodes * output_dim)), axis=1) labels.insert(0, GO_SYMBOL) def _loop_function(prev, i): if is_training: # Return either the model's prediction or the previous ground truth in training. if use_curriculum_learning: c = tf.random_uniform((), minval=0, maxval=1.) threshold = self._compute_sampling_threshold(global_step, cl_decay_steps) result = tf.cond(tf.less(c, threshold), lambda: labels[i], lambda: prev) else: result = labels[i] else: # Return the prediction of the model in testing. result = prev return result _, enc_state = tf.contrib.rnn.static_rnn(encoding_cells, inputs, dtype=tf.float32) outputs, final_state = legacy_seq2seq.rnn_decoder(labels, enc_state, decoding_cells, loop_function=_loop_function) # Project the output to output_dim. outputs = tf.stack(outputs[:-1], axis=1) self._outputs = tf.reshape(outputs, (batch_size, horizon, num_nodes, output_dim), name='outputs') self._merged = tf.summary.merge_all() @staticmethod def _compute_sampling_threshold(global_step, k): """ Computes the sampling probability for scheduled sampling using inverse sigmoid. :param global_step: :param k: :return: """ return tf.cast(k / (k + tf.exp(global_step / k)), tf.float32) @property def inputs(self): return self._inputs @property def labels(self): return self._labels @property def loss(self): return self._loss @property def mae(self): return self._mae @property def merged(self): return self._merged @property def outputs(self): return self._outputs