import torch import torch.nn as nn device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class DCRNNModel(nn.Module): def __init__(self, is_training, scale_factor, adj_mx, **model_kwargs): super().__init__() self.adj_mx = adj_mx self.is_training = is_training self.scale_factor = scale_factor self.max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2)) self.cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000)) self.filter_type = model_kwargs.get('filter_type', 'laplacian') self.horizon = int(model_kwargs.get('horizon', 1)) # for the decoder # self.max_grad_norm = float(model_kwargs.get('max_grad_norm', 5.0)) self.num_nodes = int(model_kwargs.get('num_nodes', 1)) self.num_rnn_layers = int(model_kwargs.get('num_rnn_layers', 1)) self.rnn_units = int(model_kwargs.get('rnn_units')) self.seq_len = int(model_kwargs.get('seq_len')) # for the encoder self.use_curriculum_learning = bool(model_kwargs.get('use_curriculum_learning', False)) self.input_dim = int(model_kwargs.get('input_dim', 1)) self.output_dim = int(model_kwargs.get('output_dim', 1)) class EncoderModel(DCRNNModel): def __init__(self, is_training, scaler, adj_mx, **model_kwargs): super().__init__(is_training, scaler, adj_mx, **model_kwargs) # https://pytorch.org/docs/stable/nn.html#gru # input shape is supposed to be Input (batch_size, timesteps, num_sensor*input_dim) # first layer takes input shape and subsequent layer take input from the first layer self.dcgru_layers = [nn.GRUCell(input_size=self.num_nodes * self.input_dim, hidden_size=self.rnn_units, bias=True)] + [nn.GRUCell(input_size=self.rnn_units, hidden_size=self.rnn_units, bias=True) for _ in range(self.num_rnn_layers - 1)] def forward(self, inputs, hidden_state=None): """ Encoder forward pass. :param inputs: shape (batch_size, timesteps, num_sensor*input_dim) :param hidden_state: (num_layers, batch_size, rnn_units) -> optional, zeros if not provided :return: output, hidden_state """ layer_input = inputs.permute(1, 0, 2) # first axis is now timesteps if hidden_state is None: batch_size = inputs.size()[0] hidden_state = torch.zeros((self.num_rnn_layers, batch_size, self.rnn_units), device=device) hidden = torch.empty_like(hidden_state) for layer_num, dcgru_layer in enumerate(self.dcgru_layers): layer_states = self._forward_layer(layer_input, dcgru_layer, hidden_state[layer_num]) # append last time step's hidden state hidden[layer_num] = layer_states[-1] layer_input = layer_states output = layer_input # last layer's output return output, hidden @staticmethod def _forward_layer(inputs, dcgru_layer, hidden_state): # inputs shape = (timesteps, batch_size, input_size) outputs = [] # shape (timesteps, batch_size, self.rnn_units) for cell_input in inputs[:, ]: hidden_state = dcgru_layer(cell_input, hidden_state) outputs.append(hidden_state) return torch.cat(outputs, dim=1) # runs in O(timesteps) not too slow