import argparse import numpy as np import os import sys import yaml from lib.utils import load_graph_data from model.pytorch.dcrnn_supervisor import DCRNNSupervisor def run_dcrnn(args): with open(args.config_filename) as f: supervisor_config = yaml.load(f) graph_pkl_filename = supervisor_config['data'].get('graph_pkl_filename') sensor_ids, sensor_id_to_ind, adj_mx = load_graph_data(graph_pkl_filename) supervisor = DCRNNSupervisor(adj_mx=adj_mx, **supervisor_config) mean_score, outputs = supervisor.evaluate('test') np.savez_compressed(args.output_filename, **outputs) print("MAE : {}".format(mean_score)) print('Predictions saved as {}.'.format(args.output_filename)) if __name__ == '__main__': sys.path.append(os.getcwd()) parser = argparse.ArgumentParser() parser.add_argument('--use_cpu_only', default=False, type=str, help='Whether to run tensorflow on cpu.') parser.add_argument('--config_filename', default='data/model/pretrained/METR-LA/config.yaml', type=str, help='Config file for pretrained model.') parser.add_argument('--output_filename', default='data/dcrnn_predictions.npz') args = parser.parse_args() run_dcrnn(args)