import torch import torch.nn as nn device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # class DCRNNModel: # def __init__(self, is_training, adj_mx, **model_kwargs): # self.adj_mx = adj_mx # self.is_training = is_training # self.max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2)) # self.cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000)) # self.filter_type = model_kwargs.get('filter_type', 'laplacian') # # self.max_grad_norm = float(model_kwargs.get('max_grad_norm', 5.0)) # self.num_nodes = int(model_kwargs.get('num_nodes', 1)) # self.num_rnn_layers = int(model_kwargs.get('num_rnn_layers', 1)) # self.rnn_units = int(model_kwargs.get('rnn_units')) # self.hidden_state_size = self.num_nodes * self.rnn_units class EncoderModel(nn.Module): def __init__(self, is_training, adj_mx, **model_kwargs): # super().__init__(is_training, adj_mx, **model_kwargs) # https://pytorch.org/docs/stable/nn.html#gru super().__init__() self.adj_mx = adj_mx self.is_training = is_training self.max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2)) self.cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000)) self.filter_type = model_kwargs.get('filter_type', 'laplacian') # self.max_grad_norm = float(model_kwargs.get('max_grad_norm', 5.0)) self.num_nodes = int(model_kwargs.get('num_nodes', 1)) self.num_rnn_layers = int(model_kwargs.get('num_rnn_layers', 1)) self.rnn_units = int(model_kwargs.get('rnn_units')) self.hidden_state_size = self.num_nodes * self.rnn_units self.input_dim = int(model_kwargs.get('input_dim', 1)) self.seq_len = int(model_kwargs.get('seq_len')) # for the encoder self.dcgru_layers = [nn.GRUCell(input_size=self.num_nodes * self.input_dim, hidden_size=self.hidden_state_size, bias=True)] + [nn.GRUCell(input_size=self.hidden_state_size, hidden_size=self.hidden_state_size, bias=True) for _ in range(self.num_rnn_layers - 1)] def forward(self, inputs, hidden_state=None): """ Encoder forward pass. :param inputs: shape (batch_size, self.num_nodes * self.input_dim) :param hidden_state: (num_layers, batch_size, self.hidden_state_size) -> optional, zeros if not provided :return: output: # shape (batch_size, self.hidden_state_size) hidden_state # shape (num_layers, batch_size, self.hidden_state_size) (lower indices mean lower layers) """ batch_size, _ = inputs.size() if hidden_state is None: hidden_state = torch.zeros((self.num_rnn_layers, batch_size, self.hidden_state_size), device=device) hidden_states = [] output = inputs for layer_num, dcgru_layer in enumerate(self.dcgru_layers): hidden_state = dcgru_layer(output, hidden_state) hidden_states.append(hidden_state) output = hidden_state return output, torch.cat(hidden_states, dim=1) # runs in O(num_layers) so not too slow # todo: check dim class DecoderModel(nn.Module): def __init__(self, is_training, adj_mx, **model_kwargs): # super().__init__(is_training, adj_mx, **model_kwargs) super().__init__() self.adj_mx = adj_mx self.is_training = is_training self.max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2)) self.cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000)) self.filter_type = model_kwargs.get('filter_type', 'laplacian') # self.max_grad_norm = float(model_kwargs.get('max_grad_norm', 5.0)) self.num_nodes = int(model_kwargs.get('num_nodes', 1)) self.num_rnn_layers = int(model_kwargs.get('num_rnn_layers', 1)) self.rnn_units = int(model_kwargs.get('rnn_units')) self.hidden_state_size = self.num_nodes * self.rnn_units self.output_dim = int(model_kwargs.get('output_dim', 1)) self.use_curriculum_learning = bool(model_kwargs.get('use_curriculum_learning', False)) self.horizon = int(model_kwargs.get('horizon', 1)) # for the decoder self.projection_layer = nn.Linear(self.hidden_state_size, self.num_nodes * self.output_dim) self.dcgru_layers = [nn.GRUCell(input_size=self.num_nodes * self.output_dim, hidden_size=self.hidden_state_size, bias=True)] + [nn.GRUCell(input_size=self.hidden_state_size, hidden_size=self.hidden_state_size, bias=True) for _ in range(self.num_rnn_layers - 1)] def forward(self, inputs, hidden_state=None): """ Decoder forward pass. :param inputs: shape (batch_size, self.num_nodes * self.output_dim) :param hidden_state: (num_layers, batch_size, self.hidden_state_size) -> optional, zeros if not provided :return: output: # shape (batch_size, self.num_nodes * self.output_dim) hidden_state # shape (num_layers, batch_size, self.hidden_state_size) (lower indices mean lower layers) """ batch_size, _ = inputs.size() if hidden_state is None: hidden_state = torch.zeros((self.num_rnn_layers, batch_size, self.hidden_state_size), device=device) hidden_states = [] output = inputs for layer_num, dcgru_layer in enumerate(self.dcgru_layers): hidden_state = dcgru_layer(output, hidden_state) hidden_states.append(hidden_state) output = hidden_state return self.projection_layer(output), torch.cat(hidden_states, dim=1) # runs in O(num_layers) so not too slow #todo: check dim