DCRNN/model/pytorch/dcrnn_model.py

162 lines
7.8 KiB
Python

import numpy as np
import torch
import torch.nn as nn
class Seq2SeqAttrs:
def __init__(self, adj_mx, **model_kwargs):
self.adj_mx = adj_mx
self.max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2))
self.cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000))
self.filter_type = model_kwargs.get('filter_type', 'laplacian')
# self.max_grad_norm = float(model_kwargs.get('max_grad_norm', 5.0))
self.num_nodes = int(model_kwargs.get('num_nodes', 1))
self.num_rnn_layers = int(model_kwargs.get('num_rnn_layers', 1))
self.rnn_units = int(model_kwargs.get('rnn_units'))
self.hidden_state_size = self.num_nodes * self.rnn_units
class EncoderModel(nn.Module, Seq2SeqAttrs):
def __init__(self, adj_mx, **model_kwargs):
# super().__init__(is_training, adj_mx, **model_kwargs)
# https://pytorch.org/docs/stable/nn.html#gru
nn.Module.__init__(self)
Seq2SeqAttrs.__init__(self, adj_mx, **model_kwargs)
self.input_dim = int(model_kwargs.get('input_dim', 1))
self.seq_len = int(model_kwargs.get('seq_len')) # for the encoder
self.dcgru_layers = nn.ModuleList([nn.GRUCell(input_size=self.num_nodes * self.input_dim,
hidden_size=self.hidden_state_size,
bias=True)] + [
nn.GRUCell(input_size=self.hidden_state_size,
hidden_size=self.hidden_state_size,
bias=True) for _ in
range(self.num_rnn_layers - 1)])
def forward(self, inputs, hidden_state=None):
"""
Encoder forward pass.
:param inputs: shape (batch_size, self.num_nodes * self.input_dim)
:param hidden_state: (num_layers, batch_size, self.hidden_state_size)
optional, zeros if not provided
:return: output: # shape (batch_size, self.hidden_state_size)
hidden_state # shape (num_layers, batch_size, self.hidden_state_size)
(lower indices mean lower layers)
"""
batch_size, _ = inputs.size()
if hidden_state is None:
hidden_state = torch.zeros((self.num_rnn_layers, batch_size, self.hidden_state_size))
hidden_states = []
output = inputs
for layer_num, dcgru_layer in enumerate(self.dcgru_layers):
next_hidden_state = dcgru_layer(output, hidden_state[layer_num])
hidden_states.append(next_hidden_state)
output = next_hidden_state
return output, torch.stack(hidden_states) # runs in O(num_layers) so not too slow
class DecoderModel(nn.Module, Seq2SeqAttrs):
def __init__(self, adj_mx, **model_kwargs):
# super().__init__(is_training, adj_mx, **model_kwargs)
nn.Module.__init__(self)
Seq2SeqAttrs.__init__(self, adj_mx, **model_kwargs)
self.output_dim = int(model_kwargs.get('output_dim', 1))
self.horizon = int(model_kwargs.get('horizon', 1)) # for the decoder
self.projection_layer = nn.Linear(self.hidden_state_size, self.num_nodes * self.output_dim)
self.dcgru_layers = nn.ModuleList([nn.GRUCell(input_size=self.num_nodes * self.output_dim,
hidden_size=self.hidden_state_size,
bias=True)] + [
nn.GRUCell(input_size=self.hidden_state_size,
hidden_size=self.hidden_state_size,
bias=True) for _ in
range(self.num_rnn_layers - 1)])
def forward(self, inputs, hidden_state=None):
"""
Decoder forward pass.
:param inputs: shape (batch_size, self.num_nodes * self.output_dim)
:param hidden_state: (num_layers, batch_size, self.hidden_state_size)
optional, zeros if not provided
:return: output: # shape (batch_size, self.num_nodes * self.output_dim)
hidden_state # shape (num_layers, batch_size, self.hidden_state_size)
(lower indices mean lower layers)
"""
hidden_states = []
output = inputs
for layer_num, dcgru_layer in enumerate(self.dcgru_layers):
next_hidden_state = dcgru_layer(output, hidden_state[layer_num])
hidden_states.append(next_hidden_state)
output = next_hidden_state
return self.projection_layer(output), torch.stack(hidden_states)
class DCRNNModel(nn.Module, Seq2SeqAttrs):
def __init__(self, adj_mx, logger, **model_kwargs):
super().__init__()
Seq2SeqAttrs.__init__(self, adj_mx, **model_kwargs)
self.encoder_model = EncoderModel(adj_mx, **model_kwargs)
self.decoder_model = DecoderModel(adj_mx, **model_kwargs)
self.cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000))
self.use_curriculum_learning = bool(model_kwargs.get('use_curriculum_learning', False))
self._logger = logger
def _compute_sampling_threshold(self, batches_seen):
return self.cl_decay_steps / (
self.cl_decay_steps + np.exp(batches_seen / self.cl_decay_steps))
def encoder(self, inputs):
"""
encoder forward pass on t time steps
:param inputs: shape (seq_len, batch_size, num_sensor * input_dim)
:return: encoder_hidden_state: (num_layers, batch_size, self.hidden_state_size)
"""
encoder_hidden_state = None
for t in range(self.encoder_model.seq_len):
_, encoder_hidden_state = self.encoder_model(inputs[t], encoder_hidden_state)
return encoder_hidden_state
def decoder(self, encoder_hidden_state, labels=None, batches_seen=None):
"""
Decoder forward pass
:param encoder_hidden_state: (num_layers, batch_size, self.hidden_state_size)
:param labels: (self.horizon, batch_size, self.num_nodes * self.output_dim) [optional, not exist for inference]
:param batches_seen: global step [optional, not exist for inference]
:return: output: (self.horizon, batch_size, self.num_nodes * self.output_dim)
"""
batch_size = encoder_hidden_state.size(1)
go_symbol = torch.zeros((batch_size, self.num_nodes * self.decoder_model.output_dim))
decoder_hidden_state = encoder_hidden_state
decoder_input = go_symbol
outputs = []
for t in range(self.decoder_model.horizon):
decoder_output, decoder_hidden_state = self.decoder_model(decoder_input,
decoder_hidden_state)
decoder_input = decoder_output
outputs.append(decoder_output)
if self.training and self.use_curriculum_learning:
c = np.random.uniform(0, 1)
if c < self._compute_sampling_threshold(batches_seen):
decoder_input = labels[t]
outputs = torch.stack(outputs)
return outputs
def forward(self, inputs, labels=None, batches_seen=None):
"""
seq2seq forward pass
:param inputs: shape (seq_len, batch_size, num_sensor * input_dim)
:param labels: shape (horizon, batch_size, num_sensor * output)
:param batches_seen: batches seen till date
:return: output: (self.horizon, batch_size, self.num_nodes * self.output_dim)
"""
encoder_hidden_state = self.encoder(inputs)
self._logger.info("Encoder complete, starting decoder")
outputs = self.decoder(encoder_hidden_state, labels, batches_seen=batches_seen)
self._logger.info("Decoder complete")
return outputs