34 lines
1.1 KiB
Python
34 lines
1.1 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import argparse
|
|
import tensorflow as tf
|
|
import yaml
|
|
|
|
from lib.utils import load_graph_data
|
|
from model.pytorch.dcrnn_supervisor import DCRNNSupervisor
|
|
|
|
def main(args):
|
|
with open(args.config_filename) as f:
|
|
supervisor_config = yaml.load(f)
|
|
|
|
graph_pkl_filename = supervisor_config['data'].get('graph_pkl_filename')
|
|
sensor_ids, sensor_id_to_ind, adj_mx = load_graph_data(graph_pkl_filename)
|
|
|
|
# if args.use_cpu_only:
|
|
# tf_config = tf.ConfigProto(device_count={'GPU': 0})
|
|
# with tf.Session(config=tf_config) as sess:
|
|
supervisor = DCRNNSupervisor(adj_mx=adj_mx, **supervisor_config)
|
|
|
|
supervisor.train()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--config_filename', default=None, type=str,
|
|
help='Configuration filename for restoring the model.')
|
|
parser.add_argument('--use_cpu_only', default=False, type=bool, help='Set to true to only use cpu.')
|
|
args = parser.parse_args()
|
|
main(args)
|