DCRNN/model/pytorch/dcrnn_model.py

108 lines
5.6 KiB
Python

import torch
import torch.nn as nn
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class DCRNNModel:
def __init__(self, is_training, adj_mx, **model_kwargs):
self.adj_mx = adj_mx
self.is_training = is_training
self.max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2))
self.cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000))
self.filter_type = model_kwargs.get('filter_type', 'laplacian')
# self.max_grad_norm = float(model_kwargs.get('max_grad_norm', 5.0))
self.num_nodes = int(model_kwargs.get('num_nodes', 1))
self.num_rnn_layers = int(model_kwargs.get('num_rnn_layers', 1))
self.rnn_units = int(model_kwargs.get('rnn_units'))
self.hidden_state_size = self.num_nodes * self.rnn_units
class EncoderModel(nn.Module, DCRNNModel):
def __init__(self, is_training, adj_mx, **model_kwargs):
# super().__init__(is_training, adj_mx, **model_kwargs)
# https://pytorch.org/docs/stable/nn.html#gru
nn.Module.__init__(self)
DCRNNModel.__init__(self, is_training, adj_mx, **model_kwargs)
self.input_dim = int(model_kwargs.get('input_dim', 1))
self.seq_len = int(model_kwargs.get('seq_len')) # for the encoder
self.dcgru_layers = nn.ModuleList([nn.GRUCell(input_size=self.num_nodes * self.input_dim,
hidden_size=self.hidden_state_size,
bias=True)] + [
nn.GRUCell(input_size=self.hidden_state_size,
hidden_size=self.hidden_state_size,
bias=True) for _ in
range(self.num_rnn_layers - 1)])
def forward(self, inputs, hidden_state=None):
"""
Encoder forward pass.
:param inputs: shape (batch_size, self.num_nodes * self.input_dim)
:param hidden_state: (num_layers, batch_size, self.hidden_state_size)
optional, zeros if not provided
:return: output: # shape (batch_size, self.hidden_state_size)
hidden_state # shape (num_layers, batch_size, self.hidden_state_size)
(lower indices mean lower layers)
"""
batch_size, _ = inputs.size()
if hidden_state is None:
hidden_state = torch.zeros((self.num_rnn_layers, batch_size, self.hidden_state_size),
device=device)
hidden_states = []
output = inputs
for layer_num, dcgru_layer in enumerate(self.dcgru_layers):
next_hidden_state = dcgru_layer(output, hidden_state[layer_num])
hidden_states.append(next_hidden_state)
output = next_hidden_state
return output, torch.stack(hidden_states) # runs in O(num_layers) so not too slow
class DecoderModel(nn.Module, DCRNNModel):
def __init__(self, is_training, adj_mx, **model_kwargs):
# super().__init__(is_training, adj_mx, **model_kwargs)
nn.Module.__init__(self)
DCRNNModel.__init__(self, is_training, adj_mx, **model_kwargs)
self.adj_mx = adj_mx
self.is_training = is_training
self.max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2))
self.cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000))
self.filter_type = model_kwargs.get('filter_type', 'laplacian')
# self.max_grad_norm = float(model_kwargs.get('max_grad_norm', 5.0))
self.num_nodes = int(model_kwargs.get('num_nodes', 1))
self.num_rnn_layers = int(model_kwargs.get('num_rnn_layers', 1))
self.rnn_units = int(model_kwargs.get('rnn_units'))
self.hidden_state_size = self.num_nodes * self.rnn_units
self.output_dim = int(model_kwargs.get('output_dim', 1))
self.use_curriculum_learning = bool(model_kwargs.get('use_curriculum_learning', False))
self.horizon = int(model_kwargs.get('horizon', 1)) # for the decoder
self.projection_layer = nn.Linear(self.hidden_state_size, self.num_nodes * self.output_dim)
self.dcgru_layers = nn.ModuleList([nn.GRUCell(input_size=self.num_nodes * self.output_dim,
hidden_size=self.hidden_state_size,
bias=True)] + [
nn.GRUCell(input_size=self.hidden_state_size,
hidden_size=self.hidden_state_size,
bias=True) for _ in
range(self.num_rnn_layers - 1)])
def forward(self, inputs, hidden_state=None):
"""
Decoder forward pass.
:param inputs: shape (batch_size, self.num_nodes * self.output_dim)
:param hidden_state: (num_layers, batch_size, self.hidden_state_size)
optional, zeros if not provided
:return: output: # shape (batch_size, self.num_nodes * self.output_dim)
hidden_state # shape (num_layers, batch_size, self.hidden_state_size)
(lower indices mean lower layers)
"""
hidden_states = []
output = inputs
for layer_num, dcgru_layer in enumerate(self.dcgru_layers):
next_hidden_state = dcgru_layer(output, hidden_state[layer_num])
hidden_states.append(next_hidden_state)
output = next_hidden_state
return self.projection_layer(output), torch.stack(hidden_states)