DCRNN/run_demo_pytorch.py

36 lines
1.3 KiB
Python

import argparse
import numpy as np
import os
import sys
import yaml
from lib.utils import load_graph_data
from model.pytorch.dcrnn_supervisor import DCRNNSupervisor
def run_dcrnn(args):
with open(args.config_filename) as f:
supervisor_config = yaml.load(f)
graph_pkl_filename = supervisor_config['data'].get('graph_pkl_filename')
sensor_ids, sensor_id_to_ind, adj_mx = load_graph_data(graph_pkl_filename)
# if args.use_cpu_only:
# tf_config = tf.ConfigProto(device_count={'GPU': 0})
# with tf.Session(config=tf_config) as sess:
supervisor = DCRNNSupervisor(adj_mx=adj_mx, **supervisor_config)
mean_score, outputs = supervisor.evaluate()
np.savez_compressed(args.output_filename, **outputs)
print('Predictions saved as {}.'.format(args.output_filename))
if __name__ == '__main__':
sys.path.append(os.getcwd())
parser = argparse.ArgumentParser()
parser.add_argument('--use_cpu_only', default=False, type=str, help='Whether to run tensorflow on cpu.')
parser.add_argument('--config_filename', default='data/model/pretrained/METR-LA/config.yaml', type=str,
help='Config file for pretrained model.')
parser.add_argument('--output_filename', default='data/dcrnn_predictions.npz')
args = parser.parse_args()
run_dcrnn(args)