DCRNN/run_demo.py

38 lines
1.4 KiB
Python

import argparse
import numpy as np
import os
import sys
import tensorflow as tf
import yaml
from lib.utils import load_graph_data
from model.tf.dcrnn_supervisor import DCRNNSupervisor
def run_dcrnn(args):
with open(args.config_filename) as f:
config = yaml.load(f)
tf_config = tf.ConfigProto()
if args.use_cpu_only:
tf_config = tf.ConfigProto(device_count={'GPU': 0})
tf_config.gpu_options.allow_growth = True
graph_pkl_filename = config['data']['graph_pkl_filename']
_, _, adj_mx = load_graph_data(graph_pkl_filename)
with tf.Session(config=tf_config) as sess:
supervisor = DCRNNSupervisor(adj_mx=adj_mx, **config)
supervisor.load(sess, config['train']['model_filename'])
outputs = supervisor.evaluate(sess)
np.savez_compressed(args.output_filename, **outputs)
print('Predictions saved as {}.'.format(args.output_filename))
if __name__ == '__main__':
sys.path.append(os.getcwd())
parser = argparse.ArgumentParser()
parser.add_argument('--use_cpu_only', default=False, type=str, help='Whether to run tensorflow on cpu.')
parser.add_argument('--config_filename', default='data/model/pretrained/METR-LA/config.yaml', type=str,
help='Config file for pretrained model.')
parser.add_argument('--output_filename', default='data/dcrnn_predictions_tf.npz')
args = parser.parse_args()
run_dcrnn(args)