DCRNN/model/pytorch/dcrnn_supervisor.py

179 lines
7.4 KiB
Python

import os
import time
import numpy as np
import torch
from lib import utils
from model.pytorch.dcrnn_model import EncoderModel, DecoderModel
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class DCRNNSupervisor:
def __init__(self, adj_mx, **kwargs):
self._kwargs = kwargs
self._data_kwargs = kwargs.get('data')
self._model_kwargs = kwargs.get('model')
self._train_kwargs = kwargs.get('train')
self.max_grad_norm = self._train_kwargs.get('max_grad_norm', 1.)
# logging.
self._log_dir = self._get_log_dir(kwargs)
log_level = self._kwargs.get('log_level', 'INFO')
self._logger = utils.get_logger(self._log_dir, __name__, 'info.log', level=log_level)
# data set
self._data = utils.load_dataset(**self._data_kwargs)
self.standard_scaler = self._data['scaler']
self.num_nodes = int(self._model_kwargs.get('num_nodes', 1))
self.input_dim = int(self._model_kwargs.get('input_dim', 1))
self.seq_len = int(self._model_kwargs.get('seq_len')) # for the encoder
self.output_dim = int(self._model_kwargs.get('output_dim', 1))
self.cl_decay_steps = int(self._model_kwargs.get('cl_decay_steps', 1000))
self.use_curriculum_learning = bool(
self._model_kwargs.get('use_curriculum_learning', False))
self.horizon = int(self._model_kwargs.get('horizon', 1)) # for the decoder
# setup model
self.encoder_model = EncoderModel(True, adj_mx, **self._model_kwargs)
self.decoder_model = DecoderModel(True, adj_mx, **self._model_kwargs)
@staticmethod
def _get_log_dir(kwargs):
log_dir = kwargs['train'].get('log_dir')
if log_dir is None:
batch_size = kwargs['data'].get('batch_size')
learning_rate = kwargs['train'].get('base_lr')
max_diffusion_step = kwargs['model'].get('max_diffusion_step')
num_rnn_layers = kwargs['model'].get('num_rnn_layers')
rnn_units = kwargs['model'].get('rnn_units')
structure = '-'.join(
['%d' % rnn_units for _ in range(num_rnn_layers)])
horizon = kwargs['model'].get('horizon')
filter_type = kwargs['model'].get('filter_type')
filter_type_abbr = 'L'
if filter_type == 'random_walk':
filter_type_abbr = 'R'
elif filter_type == 'dual_random_walk':
filter_type_abbr = 'DR'
run_id = 'dcrnn_%s_%d_h_%d_%s_lr_%g_bs_%d_%s/' % (
filter_type_abbr, max_diffusion_step, horizon,
structure, learning_rate, batch_size,
time.strftime('%m%d%H%M%S'))
base_dir = kwargs.get('base_dir')
log_dir = os.path.join(base_dir, run_id)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
return log_dir
def train(self, **kwargs):
kwargs.update(self._train_kwargs)
return self._train(**kwargs)
def _train_one_batch(self, inputs, labels, batches_seen, encoder_optimizer,
decoder_optimizer, criterion):
"""
:param inputs: shape (seq_len, batch_size, num_sensor, input_dim)
:param labels: shape (horizon, batch_size, num_sensor, input_dim)
:param encoder_optimizer:
:param decoder_optimizer:
:param criterion: minimize this criterion
:return: loss?
"""
encoder_optimizer.zero_grad()
decoder_optimizer.zero_grad()
batch_size = inputs.size(1)
inputs = inputs.view(self.seq_len, batch_size, self.num_nodes * self.input_dim)
labels = labels[..., :self.output_dim].view(self.horizon, batch_size,
self.num_nodes * self.output_dim)
loss = 0
encoder_hidden_state = None
for t in range(self.seq_len):
_, encoder_hidden_state = self.encoder_model.forward(inputs[t], encoder_hidden_state)
self._logger.info("Encoder complete, starting decoder")
go_symbol = torch.zeros((batch_size, self.num_nodes * self.output_dim))
decoder_hidden_state = encoder_hidden_state
decoder_input = go_symbol
outputs = []
for t in range(self.horizon):
decoder_output, decoder_hidden_state = self.decoder_model.forward(decoder_input,
decoder_hidden_state)
decoder_input = decoder_output
outputs.append(decoder_output)
if self.use_curriculum_learning: # todo check for is_training (pytorch way?)
c = np.random.uniform(0, 1)
if c < self._compute_sampling_threshold(batches_seen):
decoder_input = labels[t]
loss += criterion(self.standard_scaler.inverse_transform(decoder_output),
self.standard_scaler.inverse_transform(labels[t]))
self._logger.info("Decoder complete, starting backprop")
loss.backward()
# gradient clipping - this does it in place
torch.nn.utils.clip_grad_norm_(self.encoder_model.parameters(), self.max_grad_norm)
torch.nn.utils.clip_grad_norm_(self.decoder_model.parameters(), self.max_grad_norm)
encoder_optimizer.step()
decoder_optimizer.step()
outputs = torch.stack(outputs)
return outputs.view(self.horizon, batch_size, self.num_nodes, self.output_dim), loss.item()
def _train(self, base_lr,
steps, patience=50, epochs=100,
min_learning_rate=2e-6, lr_decay_ratio=0.1, log_every=10, save_model=1,
test_every_n_epochs=10, **kwargs):
# steps is used in learning rate - will see if need to use it?
encoder_optimizer = torch.optim.Adam(self.encoder_model.parameters(), lr=base_lr)
decoder_optimizer = torch.optim.Adam(self.encoder_model.parameters(), lr=base_lr)
criterion = torch.nn.L1Loss() # mae loss
batches_seen = 0
self._logger.info('Start training ...')
for epoch_num in range(epochs):
train_iterator = self._data['train_loader'].get_iterator()
losses = []
start_time = time.time()
for _, (x, y) in enumerate(train_iterator):
x = torch.from_numpy(x).float()
y = torch.from_numpy(y).float()
self._logger.debug("X: {}".format(x.size()))
self._logger.debug("y: {}".format(y.size()))
x = x.permute(1, 0, 2, 3)
y = y.permute(1, 0, 2, 3)
output, loss = self._train_one_batch(x, y, batches_seen, encoder_optimizer,
decoder_optimizer, criterion)
losses.append(loss)
batches_seen += 1
end_time = time.time()
if epoch_num % log_every == 0:
message = 'Epoch [{}/{}] ({}) train_mae: {:.4f}, val_mae: {:.4f} ' \
'lr:{:.6f} {:.1f}s'.format(epoch_num, epochs, batches_seen,
np.mean(losses), 0.0,
0.0, (end_time - start_time))
self._logger.info(message)
def _compute_sampling_threshold(self, batches_seen):
return self.cl_decay_steps / (
self.cl_decay_steps + np.exp(batches_seen / self.cl_decay_steps))