train success
This commit is contained in:
parent
9cfe3f01dc
commit
e95c13f0fc
|
|
@ -3,6 +3,7 @@ import torch
|
|||
import torch.nn as nn
|
||||
from federatedscope.trafficflow.model.DGCRUCell import DGCRUCell
|
||||
|
||||
|
||||
class DGCRM(nn.Module):
|
||||
def __init__(self, node_num, dim_in, dim_out, cheb_k, embed_dim, num_layers=1):
|
||||
super(DGCRM, self).__init__()
|
||||
|
|
@ -24,7 +25,8 @@ class DGCRM(nn.Module):
|
|||
state = init_state[i]
|
||||
inner_states = []
|
||||
for t in range(seq_length):
|
||||
state = self.DGCRM_cells[i](current_inputs[:, t, :, :], state, [node_embeddings[0][:, t, :, :], node_embeddings[1]])
|
||||
state = self.DGCRM_cells[i](current_inputs[:, t, :, :], state,
|
||||
[node_embeddings[0][:, t, :, :], node_embeddings[1]])
|
||||
inner_states.append(state)
|
||||
output_hidden.append(state)
|
||||
current_inputs = torch.stack(inner_states, dim=1)
|
||||
|
|
@ -34,7 +36,8 @@ class DGCRM(nn.Module):
|
|||
init_states = []
|
||||
for i in range(self.num_layers):
|
||||
init_states.append(self.DGCRM_cells[i].init_hidden_state(batch_size))
|
||||
return torch.stack(init_states, dim=0) #(num_layers, B, N, hidden_dim)
|
||||
return torch.stack(init_states, dim=0) # (num_layers, B, N, hidden_dim)
|
||||
|
||||
|
||||
# Build you torch or tf model class here
|
||||
class FedDGCN(nn.Module):
|
||||
|
|
@ -81,7 +84,7 @@ class FedDGCN(nn.Module):
|
|||
D_i_W_emb = self.D_i_W_emb[(d_i_w_data).type(torch.LongTensor)]
|
||||
node_embedding1 = torch.mul(node_embedding1, D_i_W_emb)
|
||||
|
||||
node_embeddings=[node_embedding1,self.node_embeddings1]
|
||||
node_embeddings = [node_embedding1, self.node_embeddings1]
|
||||
|
||||
source = source[..., 0].unsqueeze(-1)
|
||||
|
||||
|
|
@ -107,15 +110,11 @@ class FederatedFedDGCN(nn.Module):
|
|||
super(FederatedFedDGCN, self).__init__()
|
||||
|
||||
# Initializing with None, we will populate model_list during the forward pass
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
self.model_list = None
|
||||
self.main_model = FedDGCN(args) # Initialize a single FedDGCN model (for aggregation)
|
||||
self.graph_num = (args.num_nodes + args.minigraph_size - 1) // args.minigraph_size
|
||||
self.args = args
|
||||
self.subgraph_num = 0
|
||||
self.num_node = args.minigraph_size
|
||||
self.input_dim = args.input_dim
|
||||
self.hidden_dim = args.rnn_units
|
||||
self.output_dim = args.output_dim
|
||||
self.horizon = args.horizon
|
||||
self.model_list = ModuleList(FedDGCN(self.args).to(self.device) for _ in range(self.graph_num))
|
||||
|
||||
def forward(self, source):
|
||||
"""
|
||||
|
|
@ -130,11 +129,6 @@ class FederatedFedDGCN(nn.Module):
|
|||
"""
|
||||
self.subgraph_num = source.shape[2]
|
||||
|
||||
# Initialize model_list if it hasn't been initialized yet
|
||||
if self.model_list is None:
|
||||
# Initialize model_list with FedDGCN models, one for each subgraph
|
||||
self.model_list = ModuleList([self.main_model] + [FedDGCN(self.args) for _ in range(self.subgraph_num - 1)])
|
||||
|
||||
# Initialize a list to store the outputs of each subgraph model
|
||||
subgraph_outputs = []
|
||||
|
||||
|
|
@ -150,7 +144,7 @@ class FederatedFedDGCN(nn.Module):
|
|||
# Reshape the outputs into (batchsize, horizon, subgraph_num, subgraph_size, dims)
|
||||
output_tensor = torch.stack(subgraph_outputs, dim=2) # (batchsize, horizon, subgraph_num, subgraph_size, dims)
|
||||
|
||||
self.update_main_model()
|
||||
# self.update_main_model()
|
||||
|
||||
return output_tensor
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue