add v2 model in builder

This commit is contained in:
HengZhang 2024-11-28 10:17:52 +08:00
parent 50785ad3c1
commit fc6ed02806
2 changed files with 108 additions and 2 deletions

View File

@ -205,8 +205,12 @@ def get_model(model_config, local_data=None, backend='torch'):
from federatedscope.nlp.hetero_tasks.model import ATCModel from federatedscope.nlp.hetero_tasks.model import ATCModel
model = ATCModel(model_config) model = ATCModel(model_config)
elif model_config.type.lower() in ['feddgcn']: elif model_config.type.lower() in ['feddgcn']:
if model_config.use_minigraph is False:
from federatedscope.trafficflow.model.FedDGCN import FedDGCN from federatedscope.trafficflow.model.FedDGCN import FedDGCN
model = FedDGCN(model_config) model = FedDGCN(model_config)
else:
from federatedscope.trafficflow.model.FedDGCNv2 import FedDGCN
model = FedDGCN(model_config)
else: else:
raise ValueError('Model {} is not provided'.format(model_config.type)) raise ValueError('Model {} is not provided'.format(model_config.type))

View File

@ -0,0 +1,102 @@
from federatedscope.register import register_model
import torch
import torch.nn as nn
from federatedscope.trafficflow.model.DGCRUCell import DGCRUCell
class DGCRM(nn.Module):
def __init__(self, node_num, dim_in, dim_out, cheb_k, embed_dim, num_layers=1):
super(DGCRM, self).__init__()
assert num_layers >= 1, 'At least one DCRNN layer in the Encoder.'
self.node_num = node_num
self.input_dim = dim_in
self.num_layers = num_layers
self.DGCRM_cells = nn.ModuleList()
self.DGCRM_cells.append(DGCRUCell(node_num, dim_in, dim_out, cheb_k, embed_dim))
for _ in range(1, num_layers):
self.DGCRM_cells.append(DGCRUCell(node_num, dim_out, dim_out, cheb_k, embed_dim))
def forward(self, x, init_state, node_embeddings):
assert x.shape[2] == self.node_num and x.shape[3] == self.input_dim
seq_length = x.shape[1]
current_inputs = x
output_hidden = []
for i in range(self.num_layers):
state = init_state[i]
inner_states = []
for t in range(seq_length):
state = self.DGCRM_cells[i](current_inputs[:, t, :, :], state, [node_embeddings[0][:, t, :, :], node_embeddings[1]])
inner_states.append(state)
output_hidden.append(state)
current_inputs = torch.stack(inner_states, dim=1)
return current_inputs, output_hidden
def init_hidden(self, batch_size):
init_states = []
for i in range(self.num_layers):
init_states.append(self.DGCRM_cells[i].init_hidden_state(batch_size))
return torch.stack(init_states, dim=0) #(num_layers, B, N, hidden_dim)
# Build you torch or tf model class here
class FedDGCN(nn.Module):
def __init__(self, args):
super(FedDGCN, self).__init__()
# print("You are in subminigraph")
self.num_node = args.num_nodes
self.input_dim = args.input_dim
self.hidden_dim = args.rnn_units
self.output_dim = args.output_dim
self.horizon = args.horizon
self.num_layers = args.num_layers
self.use_D = args.use_day
self.use_W = args.use_week
self.dropout1 = nn.Dropout(p=args.dropout) # 0.1
self.dropout2 = nn.Dropout(p=args.dropout)
self.node_embeddings1 = nn.Parameter(torch.randn(self.num_node, args.embed_dim), requires_grad=True)
self.node_embeddings2 = nn.Parameter(torch.randn(self.num_node, args.embed_dim), requires_grad=True)
self.T_i_D_emb = nn.Parameter(torch.empty(288, args.embed_dim))
self.D_i_W_emb = nn.Parameter(torch.empty(7, args.embed_dim))
# Initialize parameters
nn.init.xavier_uniform_(self.node_embeddings1)
nn.init.xavier_uniform_(self.T_i_D_emb)
nn.init.xavier_uniform_(self.D_i_W_emb)
self.encoder1 = DGCRM(args.num_nodes, args.input_dim, args.rnn_units, args.cheb_order,
args.embed_dim, args.num_layers)
self.encoder2 = DGCRM(args.num_nodes, args.input_dim, args.rnn_units, args.cheb_order,
args.embed_dim, args.num_layers)
# predictor
self.end_conv1 = nn.Conv2d(1, args.horizon * self.output_dim, kernel_size=(1, self.hidden_dim), bias=True)
self.end_conv2 = nn.Conv2d(1, args.horizon * self.output_dim, kernel_size=(1, self.hidden_dim), bias=True)
self.end_conv3 = nn.Conv2d(1, args.horizon * self.output_dim, kernel_size=(1, self.hidden_dim), bias=True)
def forward(self, source, i=2):
node_embedding1 = self.node_embeddings1
if self.use_D:
t_i_d_data = source[..., 1]
T_i_D_emb = self.T_i_D_emb[(t_i_d_data * 288).type(torch.LongTensor)]
node_embedding1 = torch.mul(node_embedding1, T_i_D_emb)
if self.use_W:
d_i_w_data = source[..., 2]
D_i_W_emb = self.D_i_W_emb[(d_i_w_data).type(torch.LongTensor)]
node_embedding1 = torch.mul(node_embedding1, D_i_W_emb)
node_embeddings=[node_embedding1,self.node_embeddings1]
source = source[..., 0].unsqueeze(-1)
init_state1 = self.encoder1.init_hidden(source.shape[0])
output, _ = self.encoder1(source, init_state1, node_embeddings)
output = self.dropout1(output[:, -1:, :, :])
output1 = self.end_conv1(output)
source1 = self.end_conv2(output)
source2 = source - source1
init_state2 = self.encoder2.init_hidden(source2.shape[0])
output2, _ = self.encoder2(source2, init_state2, node_embeddings)
output2 = self.dropout2(output2[:, -1:, :, :])
output2 = self.end_conv3(output2)
return output1 + output2