train.optimizer.lr: type: float lower: 0.01 upper: 1.0 log: True model.num_of_trees: type: int lower: 3 upper: 5 vertical.algo: type: cate choices: ['lr', 'xgb'] feat_engr.type: type: cate choices: ['', 'min_max_norm', 'instance_norm', 'standardization', 'log_transform', 'uniform_binning', 'quantile_binning', 'correlation_filter', 'variance_filter', 'iv_filter'] condition1: type: equal child: model.num_of_trees parent: vertical.algo value: 'xgb' condition2: type: equal child: train.optimizer.lr parent: vertical.algo value: 'lr'