set -e cudaid=$1 method_name=$2 dataset=$3 lda_alpha=$4 cd ../../../.. if [ ! -d "out" ];then mkdir out fi if [[ $method_name = 'fedgc' ]]; then method='fedgc' total_round_num='100' batch_or_epoch='epoch' elif [[ $method_name = 'fedsimclr' ]]; then method='Fedavg' total_round_num='100' batch_or_epoch='epoch' fi echo "Fed Contrastive Learning starts..." lrs=(0.003 0.01 0.03) local_updates=(10) for (( i=0; i<${#lrs[@]}; i++ )) do for (( j=0; j<${#local_updates[@]}; j++ )) do for k in {1..2} do train_yaml=${method_name}_on_${dataset}.yaml save_path=${method_name}_on_Cifar4CL_lda${lda_alpha}_lr${lrs[$i]}_lus${local_updates[$j]}_rn${total_round_num}${batch_or_epoch}_seed${k}.ckpt python federatedscope/main.py --cfg federatedscope/cl/baseline/${train_yaml} device ${cudaid} federate.save_to ${save_path} federate.total_round_num ${total_round_num} data.splitter_args \[\{\'alpha\'\:${lda_alpha}\}\] train.optimizer.lr ${lrs[$i]} train.local_update_steps ${local_updates[$j]} train.batch_or_epoch ${batch_or_epoch} seed $k>>out/${method_name}_on_Cifar4CL_lda${lda_alpha}_lr${lrs[$i]}_lus${local_updates[$j]}_rn${total_round_num}${batch_or_epoch}.log 2>&1 linear_prob_yaml=fedcontrastlearning_linearprob_on_cifar10.yaml python federatedscope/main.py --cfg federatedscope/cl/baseline/${linear_prob_yaml} device ${cudaid} federate.restore_from ${save_path} data.splitter_args \[\{\'alpha\'\:${lda_alpha}\}\] seed $k>>out/${method_name}_on_Cifar4CL_lda${lda_alpha}_lr${lrs[$i]}_lus${local_updates[$j]}_rn${total_round_num}${batch_or_epoch}.log 2>&1 done done done echo "Fed Contrastive Learning ends."