# different from federatedscope/nlp/baseline/fedavg_bert_on_sst2.yaml, # this yaml demonstrate # (1) using cached tokenizer via `load_disk_dir` and `hg_cache_dir` # (2) using some GLUE validation data as partial test data of the FL version use_gpu: True device: -1 early_stop: patience: 5 seed: 1 federate: mode: standalone total_round_num: 500 client_num: 50 sample_client_rate: 0.2 unseen_clients_rate: 0.2 data: root: 'glue' type: 'cola@huggingface_datasets' args: [{'load_disk_dir': 'huggingface/datasets/glue/cola', 'hg_cache_dir': 'huggingface', 'max_len': 128, 'val_as_dummy_test': True, 'part_train_dummy_val': 0.2} ] splitter: 'lda' splitter_args: [ { 'alpha': 0.4, 'min_size': 1} ] model: type: 'google/bert_uncased_L-2_H-128_A-2@transformers' task: 'SequenceClassification' out_channels: 2 train: local_update_steps: 1 batch_or_epoch: epoch optimizer: lr: 0.1 weight_decay: 0.0 criterion: type: CrossEntropyLoss trainer: type: nlptrainer eval: freq: 5 metrics: ['acc', 'correct', 'f1']