use_gpu: True device: 0 seed: 12345 outdir: exp/ federate: mode: standalone method: fedavg total_round_num: 200 client_num: 18 save_to: ckpt/ data: type: hetero_nlp_tasks root: datasets/ hetero_data_name: ['imdb', 'agnews', 'squad', 'newsqa', 'cnndm', 'msqg'] num_of_client_for_data: [1, 3, 3, 2, 5, 4] max_seq_len: 384 max_tgt_len: 128 batch_size: 16 num_workers: 0 cache_dir: cache/ model: type: atc_model model_type: google/bert_uncased_L-2_H-128_A-2 stage: assign task: pretrain pretrain_tasks: ['mlm', 'denoise'] aggregator: num_agg_groups: 5 inside_weight: 1.0 outside_weight: 0.0 personalization: local_param: ['classifier'] trainer: type: atc_trainer train: batch_or_epoch: batch local_update_steps: 50 optimizer: type: AdamW lr: 5e-4 weight_decay: 0.01 scheduler: type: warmup_step warmup_ratio: 0.1 grad: grad_clip: 1.0 grad_accum_count: 4 eval: metrics: ['acc'] split: ['test'] report: ['raw'] freq: 100000000 # eval freq across rounds