import logging import os import os.path as osp import numpy as np import pandas as pd from torchvision.datasets.utils import download_and_extract_archive logger = logging.getLogger(__name__) class Abalone(object): """ Abalone Data Set (https://archive.ics.uci.edu/ml/datasets/abalone) Data Set Information: Number of Instances: 4177 Number of Attributes: 8 Predicting the age of abalone from physical measurements. Given is the attribute name, attribute type, the measurement unit and a brief description. The number of rings is the value to predict: either as a continuous value or as a classification problem. Name / Data Type / Measurement Unit / Description/ Sex / nominal / -- / M, F, and I (infant) Length / continuous / mm / Longest shell measurement Diameter / continuous / mm / perpendicular to length Height / continuous / mm / with meat in shell Whole weight / continuous / grams / whole abalone Shucked weight / continuous / grams / weight of meat Viscera weight / continuous / grams / gut weight (after bleeding) Shell weight / continuous / grams / after being dried Rings / integer / -- / +1.5 gives the age in years Arguments: root (str): root path num_of_clients(int): number of clients feature_partition(list): the number of features partitioned to each client tr_frac (float): train set proportion for each task; default=0.8 args (dict): set Ture or False to decide whether to normalize or standardize the data or not, e.g., {'normalization': False, 'standardization': False} algo(str): the running model, 'lr'/'xgb'/'gbdt'/'rf' debug_size(int): use a subset for debug, 0 for using entire dataset download (bool): indicator to download dataset seed: a random seed """ base_folder = 'abalone' url = 'https://federatedscope.oss-cn-beijing.aliyuncs.com/abalone.zip' raw_file = 'abalone.data' def __init__(self, root, num_of_clients, feature_partition, args, algo=None, tr_frac=0.8, debug_size=0, download=True, seed=123): self.root = root self.num_of_clients = num_of_clients self.feature_partition = feature_partition self.tr_frac = tr_frac self.seed = seed self.args = args self.algo = algo self.data_size_for_debug = debug_size self.data_dict = {} self.data = {} if download: self.download() if not self._check_existence(): raise RuntimeError("Dataset not found or corrupted." + "You can use download=True to download it") self._get_data() self._partition_data() def _get_data(self): fpath = os.path.join(self.root, self.base_folder) file = osp.join(fpath, self.raw_file) data = self._read_raw(file) data = self._process(data) if self.data_size_for_debug != 0: subset_size = min(len(data), self.data_size_for_debug) np.random.shuffle(data) data = data[:subset_size] train_num = int(self.tr_frac * len(data)) self.data_dict['train'] = data[:train_num] self.data_dict['test'] = data[train_num:] def _read_raw(self, file_path): data = pd.read_csv(file_path, header=None) return data def _process(self, data): data[0] = data[0].replace({'F': 2, 'M': 1, 'I': 0}) data = data.values return data def _check_existence(self): fpath = os.path.join(self.root, self.base_folder, self.raw_file) return osp.exists(fpath) def download(self): if self._check_existence(): logger.info("Files already exist") return download_and_extract_archive(self.url, os.path.join(self.root, self.base_folder), filename=self.url.split('/')[-1]) def _partition_data(self): x = self.data_dict['train'][:, :-1] y = self.data_dict['train'][:, -1] test_data = { 'x': self.data_dict['test'][:, :-1], 'y': self.data_dict['test'][:, -1] } test_x = test_data['x'] test_y = test_data['y'] self.data = dict() for i in range(self.num_of_clients + 1): self.data[i] = dict() if i == 0: self.data[0]['train'] = None self.data[0]['test'] = test_data elif i == 1: self.data[1]['train'] = {'x': x[:, :self.feature_partition[0]]} self.data[1]['test'] = { 'x': test_x[:, :self.feature_partition[0]] } else: self.data[i]['train'] = { 'x': x[:, self.feature_partition[i - 2]:self.feature_partition[i - 1]] } self.data[i]['test'] = { 'x': test_x[:, self.feature_partition[i - 2]:self. feature_partition[i - 1]] } self.data[i]['val'] = None self.data[self.num_of_clients]['train']['y'] = y[:] self.data[self.num_of_clients]['test']['y'] = test_y[:]