use_gpu: False device: 0 backend: torch outdir: vFL_adult federate: mode: standalone client_num: 2 total_round_num: 30 model: type: xgb_tree lambda_: 0.1 gamma: 0 num_of_trees: 10 train: optimizer: lr: 0.5 # learning rate for xgb model eta: 0.5 data: root: data/ type: adult splits: [1.0, 0.0] args: [{normalization: False, standardization: True}] feat_engr: scenario: vfl dataloader: type: raw batch_size: 50 criterion: type: CrossEntropyLoss trainer: type: verticaltrainer vertical: use: True key_size: 256 dims: [7, 14] algo: 'xgb' data_size_for_debug: 1500 feature_subsample_ratio: 1.0 eval: freq: 5 best_res_update_round_wise_key: test_loss hpo: scheduler: sha num_workers: 0 init_cand_num: 9 ss: 'federatedscope/autotune/baseline/vfl_ss.yaml' sha: budgets: [ 3, 9 ] elim_rate: 3 iter: 1 metric: 'server_global_eval.test_loss' working_folder: sha