{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Step-by-step Guidance for CIKM 2022 AnalytiCup Competition" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 1. 安装FederatedScope" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2022-07-26T09:23:22.036523Z", "start_time": "2022-07-26T09:23:21.642646Z" } }, "outputs": [], "source": [ "# 拷贝FederatedScope并切换到比赛所使用的分支cikm22competition\n", "\n", "!cp -r fs_latest FederatedScope\n", "\n", "# 如果不在playground中请输入命令`cd FederatedScope`\n", "import os\n", "os.chdir('FederatedScope')\n", "\n", "!git checkout cikm22competition" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 2. 搭建运行环境" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2022-07-26T09:23:28.796456Z", "start_time": "2022-07-26T09:23:22.038843Z" } }, "outputs": [], "source": [ "# 安装 FS\n", "!pip install -e . --user" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 3. 下载比赛数据集" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2022-07-26T09:23:29.189922Z", "start_time": "2022-07-26T09:23:28.798365Z" } }, "outputs": [], "source": [ "# 比赛数据集已经提前下载到`data`目录下,通过如下的命令进行解压:\n", "!mkdir -p data\n", "!cp -r ../data/CIKM22Competition ./data/" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "现在比赛数据集已经被放置在`FederatedScope/data/CIKM22Competition`目录下,遵循`CIKM22Competition/${client_id}`的方式进行组织,其中`${client_id}`是client的序号并从1开始计数。每个client的目录下包含训练(train.pt),测试(test.pt)和验证(val.pt)三个部分的数据。可以通过`torch.load`的方式来查看数据:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2022-07-26T09:23:29.823058Z", "start_time": "2022-07-26T09:23:29.192273Z" } }, "outputs": [], "source": [ "import torch\n", "# 加载序号为1的client的训练数据\n", "train_data_client1 = torch.load('./data/CIKM22Competition/1/train.pt')\n", "# 查看训练数据中的第一个训练样例\n", "print(train_data_client1[0])\n", "# 查看训练样例的label\n", "print(train_data_client1[0].y)\n", "# 查看训练样例的序号,即${sample_id}\n", "print(train_data_client1[0].data_index)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 4. 在比赛数据上运行baseline算法" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "FederatedScope为比赛数据内置了两个baseline算法:\"isolated training\"和\"FedAvg\"。假设你已经成功的搭建好FederatedScope的运行环境,并下载了比赛数据,那么可以通过以下的命令运行两个baseline算法" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2022-07-26T09:23:29.824268Z", "start_time": "2022-07-26T09:23:29.824254Z" } }, "outputs": [], "source": [ "# 作为示例,我们在这里仅运行3轮,用户可以按照自己的需求更改运行轮数\n", "# 按照如下命令运行isolated training\n", "!python federatedscope/main.py --cfg federatedscope/gfl/baseline/isolated_gin_minibatch_on_cikmcup.yaml --client_cfg federatedscope/gfl/baseline/isolated_gin_minibatch_on_cikmcup_per_client.yaml federate.total_round_num 3\n", "\n", "# 按照如下命令运行FedAvg\n", "!python federatedscope/main.py --cfg federatedscope/gfl/baseline/fedavg_gin_minibatch_on_cikmcup.yaml --client_cfg federatedscope/gfl/baseline/fedavg_gin_minibatch_on_cikmcup_per_client.yaml federate.total_round_num 3" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "其中参数--cfg xxxx.yaml指定了全局的参数,--client_cfg xxx.yaml为每一个client单独指定了参数" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 5. 保存并提交预测结果" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 提交格式\n", "如CIKM 2022 AnalytiCup Competition介绍中所述,参赛者需要将所有client的预测结果保存到一个csv文件中进行提交。在这个csv文件中,每一行代表一个测试样例的预测结果,并且由`${client_id}`和`${sample_id}`标识所预测的测试样例。其中,`${client_id}`从1开始计数,`${sample_id}`需要与比赛数据中的测试样例的序号保持一致(可以通过测试样例的`data_index`属性获得测试样例的序号)。\n", "\n", "需要注意的是,分类任务和多维度回归任务分别遵循以下不同的格式:\n", "* 对分类任务,每一行应当遵循如下的格式(`${category_id}`从0开始计数):\n", "\n", "```\n", "${client_id},${sample_id},${category_id}\n", "```\n", "\n", "* 对于N维的回归任务,每一行应当遵循如下的格式:\n", "```\n", "${client_id},${sample_id},${prediction_1st_dimension},…,${prediction_N-th_dimension}\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 通过FederatedScope保存预测结果\n", "FederatedScope中的\"cikm22competition\"分支目前支持在训练结束时保存预测结果(相关代码见`federatedscope/gfl/trainer/graphtrainer.py`和`federatedscope/core/trainers/torch_trainer.py`)。\n", "预测结果将会被保存在一个名为prediction.csv的文件中,该文件位于`outdir`参数所指定的目录中。每次运行时,如果`outdir`所指定的目录已经存在,则会使用一个时间戳后缀用以区分。\n", "在训练结束时,FederatedScope的训练记录也将标识出预测结果所在的目录,如下所示\n", "![Finish saving prediction results](https://img.alicdn.com/imgextra/i1/O1CN01L68gve1nGu3BNp5vL_!!6000000005063-2-tps-4766-404.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 提交预测结果\n", "最后,参赛选手可以将预测结果下载到本地,并上传到[天池](https://tianchi.aliyun.com/competition/entrance/532008/introduction)。" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3.8.2 64-bit", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.2" }, "vscode": { "interpreter": { "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" } } }, "nbformat": 4, "nbformat_minor": 4 }