# Whether to use GPU use_gpu: True # Deciding which GPU to use device: 0 # Federate learning related options federate: # `standalone` or `distributed` mode: standalone # Evaluate in Server or Client test set make_global_eval: True # Number of dataset being split client_num: 5 # Number of communication round total_round_num: 400 # Dataset related options data: # Root directory where the data stored root: data/ # Dataset name type: cora # Use Louvain algorithm to split `Cora` splitter: 'louvain' dataloader: # Type of sampler type: pyg # Use fullbatch training, batch_size should be `1` batch_size: 1 # Model related options model: # Model type type: gcn # Hidden dim hidden: 64 # Dropout rate dropout: 0.5 # Number of Class of `Cora` out_channels: 7 # Criterion related options criterion: # Criterion type type: CrossEntropyLoss # Trainer related options trainer: # Trainer type type: nodefullbatch_trainer # Train related options train: # Number of local update steps local_update_steps: 4 # Optimizer related options optimizer: # Learning rate lr: 0.25 # Weight decay weight_decay: 0.0005 # Optimizer type type: SGD # Evaluation related options eval: # Frequency of evaluation freq: 1 # Evaluation metrics, accuracy and number of correct items metrics: ['acc', 'correct']