use_gpu: True device: 0 early_stop: patience: 0 seed: 2 federate: mode: standalone total_round_num: 20 sample_client_num: 13 merge_test_data: True share_local_model: False client_num: 200 sampler: 'uniform' resource_info_file: 'client_device_capacity' data: root: data/ type: CIFAR10@torchvision args: [{'download': True}] splits: [0.8,0.2,0.2] subsample: 0.2 transform: [['ToTensor'], ['Normalize', {'mean': [0.4914, 0.4822, 0.4465], 'std': [0.2470, 0.2435, 0.2616]}]] splitter: 'lda' splitter_args: [{'alpha': 0.2}] dataloader: batch_size: 10 model: type: convnet2 hidden: 512 out_channels: 10 train: local_update_steps: 2 batch_or_epoch: batch optimizer: lr: 0.5 weight_decay: 0.0 grad: grad_clip: 5.0 criterion: type: CrossEntropyLoss trainer: type: cvtrainer eval: freq: 5 metrics: ['acc', 'correct'] best_res_update_round_wise_key: 'test_acc' asyn: use: True overselection: False staleness_discount_factor: 0.2 aggregator: 'goal_achieved' broadcast_manner: 'after_receiving' min_received_num: 10 staleness_toleration: 10