use_gpu: True device: 0 early_stop: patience: 5 seed: 12345 federate: mode: standalone client_num: 5 total_round_num: 300 sample_client_rate: 0.2 make_global_eval: True merge_test_data: True data: root: data/ type: 'CIFAR10@torchvision' splits: [1.0, 0.0, 0.0] num_workers: 0 transform: [['ToTensor'], ['Normalize', {'mean': [0.4914, 0.4822, 0.4465], 'std': [0.2470, 0.2435, 0.2616]}]] test_transform: [['ToTensor'], ['Normalize', {'mean': [0.4914, 0.4822, 0.4465], 'std': [0.2470, 0.2435, 0.2616]}]] args: [{'download': True}] splitter: 'lda' splitter_args: [{'alpha': 0.05}] dataloader: batch_size: 64 model: type: convnet2 hidden: 2048 out_channels: 10 dropout: 0.0 train: local_update_steps: 1 batch_or_epoch: epoch optimizer: lr: 0.01 weight_decay: 0.0 grad: grad_clip: 5.0 criterion: type: CrossEntropyLoss trainer: type: cvtrainer eval: freq: 1 metrics: ['acc', 'correct'] best_res_update_round_wise_key: test_loss