use_gpu: True device: 0 outdir: cifar_exp/pfedhpo seed: 12345 early_stop: patience: 100000 improve_indicator_mode: mean federate: mode: 'standalone' client_num: 10 total_round_num: 4000 sample_client_rate: 1.0 share_local_model: True online_aggr: True use_diff: True data: root: data/ type: 'CIFAR10@torchvision' splits: [ 0.8,0.2,0.0 ] batch_size: 32 num_workers: 0 transform: [ [ 'ToTensor' ], [ 'Normalize', { 'mean': [ 0.1307 ], 'std': [ 0.3081 ] } ] ] args: [ { 'download': True } ] splitter: 'lda' splitter_args: [ { 'alpha': 1.0 } ] model: type: convnet2 hidden: 128 out_channels: 10 dropout: 0.0 train: batch_or_epoch: epoch local_update_steps: 1 optimizer: type: SGD lr: 0.1 weight_decay: 0.0 grad: grad_clip: 5.0 criterion: type: CrossEntropyLoss trainer: type: cvtrainer eval: freq: 1 metrics: ['acc', 'correct'] count_flops: False hpo: scheduler: pfedhpo num_workers: 0 pfedhpo: use: True discrete: True train_fl: False train_anchor: False target_fl_total_round: 400 ss: 'scripts/example_configs/pfedhpo/cifar/ss.yaml' metric: 'client_summarized_weighted_avg.val_avg_loss' working_folder: cifar_exp/pfedhpo/working