use_gpu: True outdir: exp device: 0 early_stop: patience: 0 federate: mode: standalone total_round_num: 10000 client_num: 100 sample_client_num: 5 make_global_eval: True merge_test_data: True fedopt: use: True optimizer: lr: 1.0 weight_decay: 0.0 momentum: 0.0 annealing: True data: root: data/ type: 'CIFAR10@torchvision' splits: [1.0,0.0,0.0] num_workers: 0 transform: [['RandomCrop', {'size': 32, 'padding': 4}], ['RandomHorizontalFlip'], ['ToTensor'], ['Normalize', {'mean': [0.4914, 0.4822, 0.4465], 'std': [0.2023, 0.1994, 0.2010]}]] test_transform: [['ToTensor'], ['Normalize', {'mean': [0.4914, 0.4822, 0.4465], 'std': [0.2023, 0.1994, 0.2010]}]] args: [{'download': True}] splitter: 'fedsam_cifar10_splitter' splitter_args: [{'alpha': 0.05}] dataloader: batch_size: 64 model: type: fedsam_conv2 out_channels: 10 dropout: 0.0 criterion: type: CrossEntropyLoss trainer: type: local_entropy_trainer local_entropy: gamma: 0.03 inc_factor: 1.0001 eps: 0.0001 alpha: 0.75 train: batch_or_epoch: 'epoch' optimizer: lr: 0.1 weight_decay: 0.0 momentum: 0.0 eval: freq: 100 metrics: ['acc', 'correct'] best_res_update_round_wise_key: test_acc count_flops: False hpo: scheduler: bo_gp num_workers: 0 ss: 'scripts/wide_valley_exp_scripts/search_space_for_fedentsgd.yaml' sha: budgets: [10000, 10000] iter: 400 metric: server_global_eval.test_acc working_folder: bo_gp_fedentsgd