import torch from federatedscope.attack.auxiliary.utils import get_data_info def get_target_data(dataset_name, pth=None): ''' Args: dataset_name (str): the dataset name pth (str): the path storing the target data Returns: ''' # JUST FOR SHOWCASE if pth is not None: pass else: # generate the synthetic data if dataset_name == 'femnist': data_feature_dim, num_class, is_one_hot_label = get_data_info( dataset_name) # generate random data num_syn_data = 20 data_dim = [num_syn_data] data_dim.extend(data_feature_dim) syn_data = torch.randn(data_dim) syn_label = torch.randint(low=0, high=num_class, size=(num_syn_data, )) return [syn_data, syn_label]